Try the URL: http://www.trinet.org/ for information on Southern California Seismicity.

Earthquakes

- are vibrations caused by motions and/or deformation of earth's rigid surface and can be therefore defined as the strains produced by accumulated stress; and
- result from sudden release of stored energy, with or without any visible extrusives, but can also result from landslides, nuclear blasts and bolide impacts.

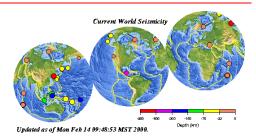
Seismic waves are of two kinds

- <u>body waves</u>, comprising (a) the faster P (or primary) waves that move in alternate compressions and dilations and (b) the slower S (shear or seconddary) waves in which particles move transverse to the direction of wave propagation, that have enabled mapping the earth's internal structure; and
- <u>surface waves</u>, comprising (a) Love waves (transverse, on the horizontal plane) and (b) Rayleigh waves (the backward rotating and circularly moving rolling waves).

Individual earthquakes

- are described in terms of epicenter, focal depth and energy release;
- locating the epicenter requires the S and
 P-wave travel time difference from three stations;
- Richter magnitude, a logarithmic scale, is used to define the energy released by an earthquake (seismic moment* scale is a variant of it);
- Earthquake-proof construction takes ground-acceleration into account.
- Mercalli scale qualitatively measures earthquake intensity or the damage caused.

Earthquake occurrence, frequency and energy release


- Shallow focus earthquakes are most frequent and release most energy
- Minor earthquakes are ~1,000 times as common as the major ones but release ~10,000 times less energy
- Internally triggered seismicity and volcanic earthquakes: (a) tectonic earthquakes occur: (i) at the present and past plate boundaries and (ii) in the plate interiors (i.e., Stable Continental Region or SCR seismicity), and (b) volcanic earthquakes include hot-spot and subduction-zone seismicity, in addition to that at the mid-ocean ridges.
- <u>Externally triggered seismicity</u> includes collapse earthquakes, nuclear tests, and reservoir-induced seismicity.

Earthquake prediction:

- The precursor signatures or the geophysical approach;
- The "Gap" theory or the statistical approach

How predictable are the earthquakes, really? Read USGS Factsheet "Quake Forecasting" at the URL: http://quake.wr.usgs.gov/prepare/factsheets/QuakeForecasts/

Earthquakes

Try http://wwwneic.cr.usgs.gov/ (USGS Earthquake homepage) and, for current California seismicity, try http://pasadena.wr.usgs.gov/recentegs/latest.htm

This USGS Online Publication: EARTHQUAKES by *Kaye M. Shedlock & Louis C. Pakiser* is available at the URL: http://pubs.usgs.gov/gip/earthq1/
For earthquake related links on the web, try:

http://www.whfreeman.com/bolt/ http://earthquake.usgs.gov/4kids/ learning/exp.html


The above digital fault and fold map for Southern California is available at the URL:

http://pubs.usgs.gov/of/199 6/ofr-96-0263/geoset.htm

It highlights blind thrust systems and other principal faults that the Southern California seismicity is typically associated with.

	Focal depth	% of all energy released
Shallow focus	0-70 Km	85
Intermediate focus	70-350 Km	12
Deep focus	350-700 Km	3

	Minor	Major
Magnitude	4-5	7-8
Frequency	~10,000/yr	~10/yr
Energy released	~10 ¹⁹ ergs/yr	~10 ²³ ergs/yr

As Mercalli intensities show a wider spread over Richter magnitudes, a good disaster mitigation strategy for earth-quakes would be to lower Mercalli intensity of an event.