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Chapter 5 

 

 

 

Balancing Risks and Returns: 

Three Theoretical Insights 

 
 

 
This chapter looks at the three basic ideas about balancing 

the investment returns that we seek against the risks that are likely to 
be incurred  — portfolio diversification, correlation of asset risks 
and returns, and random fluctuations in stock returns — that have 
become the foundations of modern finance theory.  

The chapter is divided into three sections, therefore. The first 
section examines the Markowitz efficiency frontier and portfolio, the 
merits of global diversification, and the implications of portfolio 
diversification for the individual investor. This central idea in 
modern finance theory basically seeks to construct a portfolio of 
financial assets such that the returns to the investor are maximized 
for given risk levels. The second section then looks at the Capital 
Assets Pricing Model, which relates the riskiness of an asset to its 
returns, the limitations of this model, and the alternatives to it, such 
as the Arbitrage Pricing Theory. The third section examines what 
has now emerged as the most controversial aspect of modern 
financial theory: whether the markets are indeed informationally 
efficient or inefficient, and the implications of this debate to the 
investor.  

As we show here, indexing and dollar cost averaging make 
sense to a passive investor, irrespective of whether the market is 
informationally efficient or not. 



 177 

5.1  Portfolio Diversification 
 

5.1.1 Why Diversify? 
 
Remember your mother’s admonishment: “Don’t put all your eggs in 

one basket”! This is what diversification is all about. The historical evidence 
examined in the previous chapter clearly points to the superior performance 
of the equities market, on the whole and in the long run, over the other 
investment instruments like bonds, commodities and real estate, in nominal 
as well as in real terms. But the fact that we focused on the whole market, 
and showed that these returns follow the normal distribution model 
reasonably well, also suggests that there are equities whose returns have 
surpassed our whole market mean statistics1 for long periods. The ‘high-
fliers’ equities have produced returns superior to the market average, for 
instance (section 2.2). Their volatility can be often unnerving however. 
Indeed, a basic axiom of the market is that the greater the return, the greater 
will the volatility be. Exhibit 5.1 illustrates this graphically by comparing the 
annualized returns and volatility for Dow Jones Industrial Index and its 
components for the 1980-2000 period. Notice the direct overall relation 
between risk or volatility and return here, i.e., the larger the return the greater 
the volatility.  
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Exhibit 5.1 

Higher returns involve  
higher risks, as this 
graph of risk versus 
returns for the Dow 
and its components 
shows. These returns 
are in nominal terms, 
i.e., unadjusted for 
inflation, and include 
dividends. They cover 
the Jan 1995 - Dec 
1999 period, and have 
been annualized from 
the monthly data. 

 
Two factors are particularly noticeable here: (a) the better the return 

the greater the volatility, and (b) the volatility of a portfolio (the Dow) is far 
less than the volatility of its components. As for (a), while a large volatility 
itself does not guarantee a large return, this direct relation between risk and 
return is well supported by the market’s overall history. Based on the CRSP2 
database at University of Chicago, for instance, the average annual return on 
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small-company stocks during 1926-98 was 17.4%, with a standard deviation 
of 33.8%. The annual returns for large-company stocks averaged 13.2%, with 
a standard deviation of 20.3%, during the same period. The market volatility 
has not stayed the same through its history, of course, as was discussed in the 
preceding Chapter. A direct relation between returns and volatility has 
persisted throughout history, nonetheless. But this does not mean that an 
investor seeking to maximize the returns needs to helplessly resign to the 
prospects of a bumpy ride through the market’s swings. Rather, a savvy 
investor would exploit the fact that the volatility of an index or a portfolio is 
less than the average of the volatility of its individual components. This is 
what we see in Exhibit 3.1, that the return on the Dow has been far less 
volatile than the returns on its components.  

 

5.1.2 Markowitz and Portfolio Diversification 
 
Harry Markowitz3 was the first to show exactly how a portfolio of 

suitably chosen stocks can reduce volatility to the level that an investor can 
be comfortable with but without having to sacrifice the returns significantly. 
His basic idea was simple and straightforward. Aside from the random fluc-
tuations, prices of individual securities also reflect the risks that are specific 
to the particular company, industry and the market. While market risk would 
affect all securities, albeit to varying degrees, industry or sector risk would 
affect only the companies in that sector and company risk would be specific 
to the individual company. Combining two or more assets with uncorrelated 
variability thus means diversifying the company risk away, and diversifying 
the industry or sector risk as well if these equities represent different indus-
tries or sectors. 

To understand this, let us consider a portfolio of two stocks, X and 
Y, and suppose that the proportion of total wealth invested in stock X is wx 
and that in stock Y is wy, i.e., wx + wy = 1 or wy = (1 – wx). Let the historic 
average returns be rx and ry for these two stocks and the corresponding 
standard deviation (the designated measure of volatility or risk) values σx and 
σy. Let us also accept the continued validity of normal distribution and expect 
this historic pattern to continue into the future. If we denote the expected 
returns by E(rx) and E(ry) for the two stocks, respectively, then the expected 
return on this portfolio, E(rp), is 

 

E(rp) = wx E(rx) + wy E(ry)    

 = wx E(rx) + (1 – wx) E(ry) (5.1a) 

i.e., the return on a portfolio is the weighted sum of returns on its component 
securities. 
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Computing the portfolio’s variance is not as straightforward a matter, 
however. With σx

2 and σy
2 as the individual variances of the returns of our 

two stocks, the portfolio variance, σp
2, is  

 

σp
2 = wx

2σx
2 + wy

2σy
2 + 2 wxwy σxy    

 = wx
2σx

2 + wy
2σy

2 + 2 wxwy ρxy σxσy 
(5.1b) 

 
Here, σxy = ρxy σx σy is the covariance of X and Y, and ρxy their coefficient of 
correlation. This coefficient tends to –1 if the two stocks move in opposite 
directions, +1 if they move exactly in tandem and 0 if they are uncorrelated 
altogether, i.e., –1 < ρxy < +1. It then follows from equation (5.1b) that σp

  < 
(wx σx + wy σy), i.e., the volatility of a portfolio comprising any two stocks is 
always smaller than the weighted sum of the stocks’ individual volatilities4.  

Obviously, we can even eliminate the portfolio volatility altogether5, 
by combining two stocks X and Y such that ρxy = –1, and setting wx = σy/(σx 
+ σx). That dream may not be worth chasing, however, as two stocks with ρxy 

≈ –1 are harder to find than those with ρxy ≈ +1, particularly if both must have 
a history of giving better returns than the market. Besides, the variability of 
returns, whether for the whole market or for individual stocks, hardly ever 
stays steady for long.  

Practical examples of how volatility is reduced when an investment 
portfolio comprises two or more stocks are not hard to find. Take Microsoft 
(MSFT) and Home Depot (HD), two of the Dow high-fliers, for instance. 
Based on monthly returns over a 15-year period, from April 1, 1986 to March 
31, 2001, the geometric annual returns have averaged 37.71% for Microsoft, 
with a standard deviation of 40.92%, and the corresponding numbers for 
Home Depot are 32.07% and 32.01%, respectively. While these returns are 
certainly impressive, their volatility too is rather high (Exhibit 5.2), and must 
have given their investors many anxious moments and sleepless nights. The 
weak but positive correlation (Exhibit 3.3) of their returns, with the correla-
tion coefficient of 0.39, is apparently fortuitous. The period covered here 
includes the entire bull-run of the market, from the crash of 1987 to the bear 
market of 2000-01 and these two stocks have been amongst the top perform-
ers of this period.  

Setting Microsoft as stock X and Home Depot as stock Y6, we thus 
have rx = 37.71%, σx = 40.92%, ry = 32.07%, σy = 32.01% and ρxy = 0.3896. 
These numbers can be now plugged into the equations (3.1a) and (3.1b), so 
as to estimate the expected returns and corresponding variances for portfolios 
with varying proportions wx and wy of the two stocks. Suppose, for instance, 
that we wish to estimate E(rp) and σp

2 for a portfolio with 30% Microsoft and 
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Exhibit 5.2:  

The monthly price changes (left) and corresponding statistical distribution (right) for 
Microsoft (MSFT) and Home Depot (HD) common stocks. The portfolio shown here 
is the minimum-variance portfolio computed from equation (5.1b) 
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Exhibit 5.3 

The monthly geometric 
returns for Microsoft 
(MSFT) and Home Depot 
(HD) stocks are weakly, 
but positively, correlated. 
Their coefficient of corre-
lation is 0.3896. The April 
1986 – March 2001 
period has generally been 
one of rising prices, 
however, and may well 
account for this correla-
tion. 

 

70% Home Depot stocks. Then, wx = 0.3 and wy = 0.7, so that equations 
(5.1a) and (5.1b) yield 
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E(rp) = 0.3 × 0.3771 + 0.7 × 0.3207    

 = 0.3376 = 33.76% (5.2a) 

and 
 

σp
2
 = (0.3)2 × (0.4092)2  + (0.7)2 × (0.3201)2  

  + 2 × 0.3 × 0.7 × 0.3896 × 0.4092 × 0.3201 

 = 0.01507 + 0.05021 + 0.02143   (5.2b) 

 = 0.08671  

so that σp = √0.08671 = 0.2945 = 29.45% 

 
To understand what benefits this accomplishes, recall that a typical 

characteristic of the normal distribution curve of Exhibit 2.32 is that a little 
over two-thirds (68.26%) of the data would be within one standard deviation 
from the mean. Using this model, then, the annual returns on a 100% Micro-
soft portfolio would have 68.26% chance of ranging from a low of –3.21% to 
a whopping 78.63% whereas a 100% Home Depot portfolio would give 
between 0.06% to 64.08% annual returns at this probability level. The corres-
ponding numbers for our portfolio of 30% Microsoft and 70% Home Depot 
stocks are 4.31% and 63.21%. Clearly, we have sacrificed some gains and 
have reduced the risk substantially. 

What we have just calculated is not for the minimum-variance 
portfolio. The results of these computations for different values of wx and wy 
are graphed in Exhibit 5.4. It shows that a portfolio comprising 25% in 
Microsoft  

 

32

34

36

E(rp)

32 36 40

σp

Annualized Risk or Volatility (%)

A
n

n
u

a
li

ze
d

 R
et

u
rn

 (
%

)

75% HD, 25% MSFT

100% HD

100%

MSFT

Same or better
returns, but with
same or smaller
risk, than for
100% HD

50% HD, 50% MSFT 



     

Same or less risk, but with 
same or better returns, 
than for 100% HD

32

34

36

E(rp)

32 36 40

σp

Annualized Risk or Volatility (%)

A
n

n
u

a
li

ze
d

 R
et

u
rn

 (
%

)

75% HD, 25% MSFT

100% HD

100%

MSFT

Same or better
returns, but with
same or smaller
risk, than for
100% HD

50% HD, 50% MSFT 



     

Same or less risk, but with 
same or better returns, 
than for 100% HD

 

Exhibit 5.4 

Based on monthly 
return statistics for 
the past 15 years, we 
use equation (3.1b) 
to find minimum-
variance portfolio 
for Microsoft 
(MSFT) and Home 
Depot (HD) stocks 
at 25% MSFT and 
75% HD. 
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stocks and 75% in Home Depot stocks would have indeed had the minimum 
variance here. Note that, in terms of returns, every combination of the two 
stocks here is superior to investing 100% in Home Depot and all 
combinations with <50% in Microsoft carry either the same or less risk than 
100% Home Depot. Indeed, if you were to settle for the same risk as the 
Home Depot, then investing 50% in Home Depot and 50% in Microsoft 
would have given you superior returns than carrying only the Home Depot 
stocks. Also, any combination of the two stocks with more than 50% but less 
than 100% in Home Depot would have given you better returns at lower risk 
than if you had owned only the Home Depot stocks in the portfolio.  

For comparison, Exhibit 5.5 shows the growth, in nominal dollars by 
March 31, 2001, of a $1,000 investment of April 1, 1986, for Microsoft, 
Home Depot, our minimum-variance portfolio and the Dow. With a perfect 
hindsight, one would have picked Microsoft, of course. But, considering that 
even the best investor is still human, this example clearly shows that diversi-
fication is the way to go. 
 

Exhibit 5.5  

In nominal dollars, a $1,000 investment made at the opening of trade on April 1, 
1986 would have grown, by March 31, 2001, to $286,000 in the case of Microsoft, 
$123,000 in the case of Home Depot, and $172,000 for the minimum-variance 
portfolio computed here. 
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This idea, that a judicious combination of uncorrelated or poorly 
correlated stocks greatly lowers the variance of a portfolio while enhancing 
its return, is what portfolio management is mostly about. Suppose we have 
any number N of stocks that we wish to combine in a portfolio. We then need 
to extend equations (5.1a) and (5.1b) from two to the N stock case, to find 
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their relative proportions, w1, w2, …, wN, and the expected portfolio return 
E(rp) and variance σp

2, e.g., 
 

 
E(rp) 

 
= 

N 

Σ 
i=1 

 
wi E(ri) 

 
(5.3a) 

 
and 

 
σp

2 
 
= 

N 

Σ 
i=1 

 
wi

2 σi
2 + 2 

N-1 

Σ 
i=1 

N 

Σ 
j=i+1 

 
wi wj ρij σI σj

  
 

(5.3b) 

 
Intimidating though this computational horror may seem, the general 

scheme here is simple and straightforward, and is illustrated in Exhibit 5.6. 

Basically, the diagonal boxes in this N × N matrix contain the variance terms 
wi

2σi
2, and the off-diagonal boxes the covariance terms wiwjσij (= wiwj ρij 

σIσj). Suppose, for simplicity, that we invest equally in all the N stocks in this 
portfolio. Then w1 = w2 = … = wN = 1/N. The N diagonal boxes then add up 

to N × (1/N)2 × average variance and the (N2 – N) off-diagonal boxes will 

add up to (N2 – N) × (1/N)2 × average covariance. This gives 
 

Portfolio variance = 
1 

N 
× average variance 

  

  
+ (1 – 

1 

N 
) × average covariance 

(5.4a) 

As N → ∞, (1/N) → 0, and the variance term here tends to vanish. Thus, for 
large values of N, 
  

Portfolio variance � average covariance (5.4b) 
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Exhibit 5.6:  

The N × N matrix to 
find the variance of 
an N-stock portfolio. 
The diagonal boxes 
contain the variance 
terms (wi

2
σi

2) while 
off-diagonal boxes 
contain the covar-
iance terms (wiwjσij). 
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The result summarized in Equation (5.4b) has an important implica-
tion. It shows that the variance of a portfolio asymptotically approaches the 
average covariance of returns on stocks comprising the portfolio, no matter 
how many additional stocks we add to it. There is a practical limit, however, 
to the number of stocks that one can add to a portfolio. Take three indexes 
for instance, the Wilshire Total Market Index comprises over 97% of the 
entire U.S. equities market, in terms of market capitalization, whereas the 
S&P-500 Index comprises the stocks of 500 largest U.S. businesses, and the 
Dow comprises only 30. As the volatilities of these three indexes are largely 
comparable, it is clear that the average covariance of the market never 
vanishes. We can decompose the risk associated with security price changes 
into two principal components (Exhibit 5.7). Diversification can only 
eliminate what is commonly called the ‘unique risk’. This is also known as 
diversifiable risk because it can be diversified away by adding uncorrelated 
stocks to a portfolio and is specific either to a single company or to a group 
of them. The other component of risk, known as the ‘market risk’ or 
systematic risk, is immune to diversification and comes from the market or 
economy-wide forces. 
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Exhibit 5.7 

Investors in the stock market face 
two kinds of risk: unique risk 
tends to be company specific, and 
can be diversified away, whereas 
market risk arises from economy-
wide forces and is immune to 
portfolio diversification. 

 

Is there a size limit, then, for the number of stocks in a well-
diversified portfolio? The fact that Dow’s 30 stocks mimic the S&P 500 so 
well, the latter itself being a good proxy for the Wilshire 5000 and the whole 
market, suggests that 30 may well be a good enough number. This is illus-
trated in Exhibit 5.8 where we compare the total monthly returns on the Dow 
and the S&P-500 indexes. The period covered here extends from January 
1897 through December 2000. The two sets of returns show a direct 
relationship, with a correlation coefficient of 0.78. This compares reasonably 
well with the correlation coefficient of 0.75 for the returns on the Dow versus 
the Wilshire 5000.  
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Exhibit 5.8: 

Total monthly returns on 
the Dow compared to 
those on the S&P-500. 
Despite the rather wide 
scatter, the relation 
between the two sets of 
data here is markedly 
direct, with a correlation 
coefficient of 0.78. 

 
 

 

In one of the earliest studies to systematically examine this issue, 
Fama7 showed that the volatility of a portfolio drops substantially on the 
introduction of the first few stocks and practically flattens after about 25 
stocks. This result, reproduced in Exhibit 5.9, suggests that unique risk is 
effectively diversified away when we use a carefully crafted portfolio of 15-
25 stocks. Statman8 has argued that effective diversification does not really 
require representing the entire market in a portfolio, as a portfolio of no more 
than about 30 stocks can suffice.  
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Exhibit 5.9:  

Fama argued that the 
standard deviation or 
volatility of a portfolio 
changes little after about 25 
stocks, and that most of the 
drop in volatility occurs 
before 10-15 stocks. This 
suggests that unique risk can 
be effectively diversified 
away by carefully selecting a 
portfolio of 15-25 stocks. In-
ternational diversification 
offers an even more efficient 
way to eliminate unique risk 
than domestic diversification. 
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5.1.3 Seeking Diversification Globally 
 
If selecting a few U.S. domestic stocks can help diversify a portfolio, 

so reducing its risk without sacrificing the returns, then international diversi-
fication should achieve similar results with even greater efficiency. This was 
the rationale for Solnik’s9 study, the results of which are included in Exhibit 
5.10 as “international stocks”. This study found that a portfolio of 5-6 
international stocks has the same volatility that a comparable combination of 
15 or so domestic (U.S.) stocks would have. This is mainly because 
systematic risk for a portfolio of domestic stocks is more than double that of 
the international portfolio. Recent research10 suggests that a market portfolio 
of all the world’s endowments would also contribute to societal welfare. 

Exhibit 5.10:  

The average coefficients of variation of regression of factors show that domestic 
factors explain almost one-half (46%) of the variations in stock returns world-wide, 
and more than one-half (55%) of those in the United States11. 
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Now, diversifying domestically means seeking a representative 
selection across all the principal market sectors. International diversification 
then implies diversification not only across different countries and their 
markets but also across the principal sectors of those markets. It is not 
surprising, therefore, that unique risk is far more effectively diversified away 
when we construct an international portfolio than when the portfolio is purely 
domestic. Domestic factors do not disappear in an internationally diversified 
portfolio, however. Instead, as is clearly brought out in Exhibit 5.10 in which 
we reproduce Solnik’s summarization of the results of a factor regression 
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study on the relative importance of world, industrial, currency and domestic 
factors in explaining the stock returns, domestic factors do matter greatly.  

An interesting feature of the data in Exhibit 5.10 is that they show 
currency factor to have the least impact of the four factors considered here. 
Otherwise, basically, exchange rates vary12 with interest and inflation rates, 
by way of International Fisher Effect (Exhibit 5.11), balance of trade and 
foreign direct investments.  

Exhibit 5.11: 
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 f¥/$

 S¥/$

Difference between forward
and spot exchange rates

 E(S ¥/$)

 S¥/$

Expected change in
spot exchange rates

 

How the domestic interest 
(denoted by r¥ and r$, for 
Japan and the U.S., respec-
tively) and inflation (i¥ and 
i$) rates affect the spot (S¥$) 
and forward (f¥$) foreign 
exchange rates. 

Source: 
Richard Brealey, Stewart 
Myers and Alan Marcus: 
Fundamentals of Corporate 
Finance (Irwin McGraw-
Hill, 1999) 

Two empirical evidences will suffice to explain this. As shown in 
Exhibit 5.12(a), countries with higher interest rates in a given year tend to 
have higher inflation rates in the following year and, as shown in Exhibit 
5.12(b), the countries with higher inflation rates tend to see their currencies 
depreciate compared to appreciation of the currencies of countries with lower 
inflation rates. 
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Exhibit 5.12: 

(a) Countries with higher interest rates 
one year tend to have higher inflation 
rates next year (top left) and 
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(b) the countries with high inflation rates tend to see their currencies depreciate 
(top right). 

Source: Richard Brealey, Stewart Myers and Alan Marcus: 
Fundamentals of Corporate Finance (Irwin McGraw-Hill, 1999) 
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With rapid globalization, deregulation and privatizations since the 
1990s, the country barriers are gradually falling, however. Indeed, today’s 
world is an increasingly tripartite one (Exhibit 5.13) comprising North 
America, Europe and Asia. In constructing a globally diversified portfolio, 
the industry factors are therefore becoming increasingly important13,  instead  

 

Trade with
rest of the

world

1,380
1,640
1,586

E. Asia*
E.U.
U.S.

market ex-
change rates

6,382
8,093
7,834

purchase
power parity

9,431
7,559
7,665

E. Asia*
E.U.
U.S.

Output

Official
monetary
reserves

668
380

140§

E. Asia*
E.U.
U.S.

* comprises ASEAN
10, China, Japan
and South Korea

§ with gold valued at
the market price

Towards a
tripartite world
The Economist, Jul 13th 2000  

Exhibit 5.13 

‘Global’ increasingly 
implies a tripartite 
world in which Japan 
is no longer the sole 
Asian representative. 
Indeed, there is not a 
single country or re-
gion that dominates 
global merchandize 
production, trade and 
commerce. This may 
well signify the past, 
however, particularly 
as the impacts of 
China and India on 
the world’s merchan-
dize production and 
hi tech industry, res-
pectively, are hard to 
gauge as yet.  

 
of the country factors. This calls for a sector rather than a country approach 
to portfolio diversification. This has several advantages14. As for the invest-
ment universe itself, for instance, companies are increasingly hard to classify 
within a country and can be better compared with their peers in a cross-
country approach. Same selection criteria for investment analysis applies 
within a sector, even when we compare the companies in these sectors across 
the countries, whereas, were we to focus on a country-by-country analysis 
then we would need to use a sector-dependent multiplicity of selection 
criteria for each country. Focus on the sectors also helps us emphasize 
growth industries, in terms of the investment style that, in the country 
approach, depends on the country’s economic structure. The sector approach 
also delegates allocation of capital to company’s management, thus making 
asset allocation more efficient. This does not, of course, mean that the sector 
approach has no pitfalls. Nations are sovereign entities, after all, and all 
politics is essentially local. Sector diversification, for example, does not 
eliminate currency risk, considered the scourge and the opportunity in 
international investment. Different accounting principles and practices 
exacerbate the problems in cross-country comparison of businesses, even 
when they are in the same sector, as do customs and cultural factors. 
Information asymmetry remains a problem and investors still prefer to invest 
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in their own country and currency. Exhibit 5.14, taken from MSCI-World 
Index, presents one example of the weights for individual country and sectors 
in implementing such an approach. 
 
Exhibit 5.14 

An example of the sector and country factors in the sector approach for creating an 
internationally diversified portfolio. 

Industry

Energy
Materials
Industrials
Consumer: (a) Discretionary

(b) Staples
Health Care
Financials
Information Technology
Telecommunications
Utilities

Total

World

6.1%
3.7%

10.3%
14.4%

7.2%
12.1%
21.2%
13.1%

8.0$
4.1%

100.0%

USA

3.0%
1.4%
5.8%
7.6%
3.9%
7.6%
9.2%
9.3%
3.6%
2.2%

53.6%

Europe

3.0%
1.4%
2.4%
3.4%
2.7%
3.7%
8.7%
2.2%
3.7%
1.4%

32.5%

Japan

0.1%
0.6%
1.8%
3.1%
0.5%
0.7%
1.9%
1.6%
0.5%
0.4%

11.1%

Pacific

0.0%
0.2%
0.3%
0.3%
0.1%
0.0%
1.4%
0.0%
0.2%
0.1%

2.8%
 

Courtesy: Fabrice Vallat 

Note that, however diversified a portfolio is at any given point in 
time, it needs to be continually monitored and modified. For instance, the 
data for the 1962-97 period suggest15 that the volatility of individual stocks 
has increased in the recent years while the correlation among stock returns 
has fallen steadily. As for portfolio diversification, this has two implications: 
(a) the number of stocks needed to eliminate unique risk has been rising, and 
(b) portfolio volatility has increased even after this risk has been eliminated. 
If you thought that international diversification could come to your rescue, 
think again. Another recent study16 has found higher correlation between 
international equities in bear markets, than in the bull markets. Needless to 
stress, such a co-movement of equities during the bear markets when the risk 
of loss is only likely to rise, robs portfolio diversification of its principal 
attraction as a risk-reduction strategy. 

 

5.1.4 Diversification and the Individual Investor 
 
Our discussions so far have focused on minimizing the variance. But 

the risk-return profile of a portfolio of stocks is determined as much by the 
market as by the investor. The market determines the expected return and 

volatility, E(rp) and σp
2, for instance, and the investor selects the acceptable 

combination of risk and return by distributing the wealth between the 
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selected securities. Stocks are not necessarily the only game in town here, 
after all. More often than not, three alternatives are typically available — 
stocks, bonds and money market instruments, for instance. Nor is the choice 
between domestic and international markets limited to stocks. Exhibit 5.15 
shows the risk/ return trade-off for an internationally diversified portfolio of 
bonds. This example, taken from Solnik17, uses 1971-94 data and shows that 
a U.S. bond investor would have been better off including foreign bonds in 
the portfolio.  Indeed, reducing the U.S. bond content from 100% (point A) 
to 70% (point B) would have reduced volatility the most. What is more, this 
bond portfolio would have been no more volatile than the 100% U.S. bond 
portfolio, but with vastly improved returns, had it comprised 50% U.S. and 
50% foreign bonds (point C). 
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Exhibit 5.15:  

An internationally diversi-
fied portfolio of bonds, 
based on the 1971-94 data, 
shows that a U.S. investor 
would have been better-off 
adding some foreign bonds 
to the portfolio. 

The points A-E in Exhibit 5.15 are located on a curve that defines all 
conceivable combinations of the U.S. and foreign bonds here. This curve, or 
the similar curve in Exhibit 5.4, defines the efficiency frontier — the locus of 
points where the investor receives the highest rate of return for a given level 
of risk and assumes the lowest possible risk for a given level of return. 
Compare any of the points A-E in this Exhibit with F. For the same level of 
risk as F, point D gives a better return here whereas, for the same level of 
return as F, point C assumes a far smaller risk. 

Minimizing the variance (point B in Exhibit 5.15 or the point in 
Exhibit 5.4 for 75% HD and 25% MSFT) is not the only choice available to 
an investor, however. Any point on the efficiency frontier could be appropri-
ate. The exact point on the efficiency frontier where the investor decides to 
be is determined by that individual’s utility curve — this curve represents his 
or her level of satisfaction with the risk and the return on the investment. 

The logic behind the utility or indifference curves E(U)1 — E(U)3 in 
Exhibit 5.15, with utility (or wealth W) increasing from E(U)1 to E(U)3, is 

simple. The investor can choose any combination of E(rp) and σp on the 
efficiency frontier for the indifference curve tangential to it, e.g., E(U)2 in 
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this Exhibit. Hence their designation as indifference curves. The shape of 
these curves suggests that there is a certain level of substitution between E(rp) 

and σp. The utility function that is often used in these studies, and the one 
used here, is a quadratic function18 of the type  

E(U) = a + b rp + c (rp
2 + σp

2) (5.5) 

where a, b and c are constant such that b > 0, c < 0 and (b + 2c) > 0 for all the 
relevant values of W. 

The indifference curves implied by this utility function have positive 

slopes, i.e., (∂σp
2/∂rp) = – (b + 2crp)/c > 0 and (∂2σp

2/∂rp
2) < 0 at any point 

along the curve. The marginal rate of substitution (MRS), the rate19 at which 
an individual is willing to trade one good for another while remaining 
equally well off (this is what the absolute value of the slope of indifference 

curve actually is), diminishes here as σp
2 is progressively increased for higher 

rp. While this is the assumption that economists usually make in such studies, 
this suggests that aversion to risk increases with wealth. The proportion of 
wealth invested in risky securities should decrease, in that case, as the 
amount of wealth increases. But this has been a contentious issue20.  

Consider the results of the Fed’s triennial Consumer Finance Survey, 
the most recent of which was conducted in 200121, for instance. As shown in 
Exhibit 5.16, these data show that wealthier families are more exposed to the 
stocks than the less wealthy families. The proportion of families holding 
certificates of deposit, where the risk of default is almost nonexistent for up 
to $100,000 thanks to FDIC (Federal Deposit Insurance Corporation) insur-
ance, appears to move slowest with family wealth, however. Perhaps this 
suggests that families invest in the stock market only after they have 
exhausted the other avenues. After all, this survey also revealed that 58% of 
the total assets of all families in 2001 were held in nonfinancial instruments, 
mostly in residential and nonresidential properties and equities. As for stock 
holdings, though, we should note that mutual fund and retirement accounts 
tend to be dominated by stocks and that, between 1998 and 2001, the relative 
proportion of those holding financial assets gained slightly, at the expense of 
the nonfinancial holdings. Curiously, if we group certificates of deposit and 
bonds as low risk assets and group stocks with the presumably equity 
dominated mutual funds and retirement accounts as the relatively risky 
assets, then the ratio median family holdings in these risky to low risk asset 
groups is actually higher for the poorer 40% of families than for the richest 
10%. These data hardly support the possibility that the propensity for bearing 
financial risks increases with family wealth. 

A more compelling reason22 why most researchers prefer using the 
quadratic utility function, however, is that it is completely specified by its 
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mean and variance regardless of whether the underlying statistical distribu-
tion is normal or otherwise. It is positively related to the expected wealth and 
negatively to the risk in securing that wealth.  

 

Exhibit 5.16: As the results of Federal Reserve Board’s 2001 Consumer Finance 
Survey show, exposure to stock market rises with family wealth. But 
the proportion of families investing in stocks versus bonds seems to 
have remained independent of family wealth. (Source: Federal 
Reserve Bulletin, January 2003). 

 

Classification based on 
personal income ⇒⇒⇒⇒  

Poorest 
quintile 

20 —
39.9% 

40 —
59.9% 

60 —
79.9% 

80 —
89.9% 

Richest 
10% 

% of families in the income groups holding the assets:  

Certificates of deposit 10.0% 14.7% 17.4% 16.0% 18.3% 22.0% 
Bonds (also savings bonds) 3.8% 11.0% 15.6% 28.1% 34.2% 42.4% 

Stocks 3.8% 11.2% 16.4% 26.2% 37.0% 60.6% 
Mutual funds 3.6% 9.5% 15.7% 20.6% 29.0% 48.8% 

Retirement accounts 13.2% 33.3% 52.8% 75.7% 83.7% 88.3% 
Insurance 13.8% 24.7% 25.6% 35.7% 38.6% 41.8% 

Other managed accounts 2.2% 3.3% 5.4% 8.5% 10.7% 16.7% 

Median family holdings of financial assets:  

Certificates of deposit $10,000 $14,000 $13,000 $15,000 $13,000 $25,000 

Bonds (also savings bonds) $1,000 $600 $10,500 $41,000 $51,000 $90,700 
Stocks $7,500 $10,000 $7,000 $17,000 $20,000 $50,000 

Mutual funds $21,000 $24,000 $24,000 $30,000 $28,000 $87,500 
Retirement accounts $4,500 $8,000 $13,600 $30,000 $55,000 $130,000 

Insurance $3,600 $6,200 $7,000 $12,000 $10,000 $24,000 
Other managed accounts $24,200 $36,000 $70,000 $60,000 $70,000 $112,000 

Median family holdings of selected nonfinancial assets:  

Vehicle $3,000 $8,400 $12,600 $17,600 $22,700 $30,000 
Residential and nonresi-

dential property, including 
residential equity 

 
$122,500 

 
$185,000 

 
$175,000 

 
$249,500 

 
$283,500 

 
$646,200 

Business equity $56,300 $35,000 $61,700 $62,500 $100,000 $268,300 

Other nonfinancial assets $6,000 $6,000 $10,000 $10,000 $20,000 $50,000 

Median family debt:  

Residential and 
nonresidential property 

$28,000 $70,000 $94,900 $107,500 $122,200 $211,000 

Other debts $13,300 $23,400 $42,800 $83,500 $126,900 $293,600 

 

Returning to Exhibit 5.15, we can now see why point C is where on 
the efficiency frontier our savvy investor would choose to be. It is the only 
point at which an indifference curve, E(U)2 in this case, is tangential to the 
efficiency frontier and is, therefore, an optimal point at which utility is 
maximized for an efficient combination of return and risk. 
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The applicability and relevance of modern portfolio theory need not 
be limited to the supposedly esoteric world of high finance. Examples 
abound of how profitably its rationale can be applied in a miscellany of di-
verse areas like production diversification and product line diversification. 
Box 5.1 presents an early example of this type. Japan’s Keiretsu system, or 
General Electric’s diverse holdings for that matter, too illustrate portfolio 
diversification23. 

 

Box 5.1: Product Diversification at the Automobile Dealerships 

In an article published in the Journal of Marketing (Spring
1980), T. Marx (“The Economics of Single- and Multiple-Line
Retail Automobile Dealerships”) presents an interesting appli-
cation of the Markowitz efficiency frontier for product-line
diversification by automobile dealerships. Single-line dealer-
ships, he argued, minimize the capital investment in sales,  staff

product lines in a region
is an effective way
to identify products
for a multiple-
line dealership in
that region, this
study argues.

This idea makes
immediate sense
to the students of
portfolio  theory,

Training, service facilities, and inventories, but raises the risk of public unacceptability. Despite the
economic disadvantage of having to forgo these advantages of single-line dealerships, it is this risk
that has motivated  multiple-line dealerships. By the early 1980s, for instance, one-half of the thirty
thousand and odd automobile dealerships had multiple lines. Using the correlation between various

particularly when we look at the correlation matrix, shown above, for the total U.S. domestic car
sales during 1970-87. Extending the argument put forth by Marx, one can also see in this correlation
matrix an important factor behind Chrysler’s acquisition of American Motors, Plymouth and Dodge.
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In an article published in the Journal of Marketing (Spring
1980), T. Marx (“The Economics of Single- and Multiple-Line
Retail Automobile Dealerships”) presents an interesting appli-
cation of the Markowitz efficiency frontier for product-line
diversification by automobile dealerships. Single-line dealer-
ships, he argued, minimize the capital investment in sales,  staff

product lines in a region
is an effective way
to identify products
for a multiple-
line dealership in
that region, this
study argues.

This idea makes
immediate sense
to the students of
portfolio  theory,

Training, service facilities, and inventories, but raises the risk of public unacceptability. Despite the
economic disadvantage of having to forgo these advantages of single-line dealerships, it is this risk
that has motivated  multiple-line dealerships. By the early 1980s, for instance, one-half of the thirty
thousand and odd automobile dealerships had multiple lines. Using the correlation between various

particularly when we look at the correlation matrix, shown above, for the total U.S. domestic car
sales during 1970-87. Extending the argument put forth by Marx, one can also see in this correlation
matrix an important factor behind Chrysler’s acquisition of American Motors, Plymouth and Dodge.
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5.2  The Asset Pricing Model and Theory 
 

5.2.1 Capital Asset Pricing Model (CAPM) 
 
It is thus clear that, in designing a suitable portfolio of risky assets 

like stocks, determining an optimal combination of returns and risk repre-
sents only a partial analysis. Completing it requires looking at the investor’s 
own risk/reward tradeoffs and matching them with the available market op-
portunities. This Markowitz model is built on the following assumptions: 

 
– Investors focus on the expected rate of return and on the volatility of 

a security. 
– Investors prefer higher expected returns at lower expected risk, and 

therefore wish to hold efficient portfolios: those yielding maximum 
expected returns for the given level of risk, or minimum level of risk 
for a given level of expected return. 

– Investors agree on the probability distribution of rates of return on 
securities. This ensures a unique efficiency frontier. 
 
The investor in a Markowitz world proceeds systematically in se-

lecting securities that are less than perfectly correlated. The construction of 
the efficiency frontier is not based on a random selection of securities. Where 
along this efficiency frontier an investor chooses to be is determined by his 
or her own utility function. For one investor, for instance, point C in Exhibit 
5.15 is the optimum point. Another investor, with different preferences, may 
prefer another point on the same efficiency frontier. There is no unique com-
bination of risky securities that all investors should prefer, therefore. Instead, 
each investor may allocate his or her wealth differently among the risky se-
curities, albeit on the same efficiency frontier. That is why Markowitz could 
not derive a general equilibrium asset-pricing model. The model could only 
describe the tradeoff between return and risk in the market for securities and 
in the mind of the individual investor.  

The development of the capital asset pricing model (CAPM) began 
with the work of William Sharpe24 and John Lintner25. Sharpe introduced the 
concept of risk-free asset in the analysis, whose effects now reverberate 
throughout the world of investment and capital management. The CAPM 
adds the following assumptions to those in the Markowitz model: 

 
– There is equilibrium in the security markets (this equilibrium is only 

partial, the effects of the securities markets on the production sector 
was ignored, for example, and is a characteristic of the pure ex-
change economy.)  
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– Investments are divisible, i.e., any size of investment is feasible. 
– There is a risk-free asset, with a risk-free rate, at which the investors 

can borrow or lend.  
– Transaction costs or taxes are ignored.  
– The ex ante expectations about the market as a whole are 

homogenous and all investors agree on the distribution of rates of 
return (i.e., this translates into the idea, explored in the next section, 
that the market is efficient).  

– Investors are risk-averse and maximize the mean-variance utility 
functions. They maximize one-period expected-utility-of-wealth and 
the length of the period (the investment horizon) is identical for all 
investors. 
 
To derive the Sharpe model, we start by decomposing the portfolio, 

with expected return E(rp) and volatility σp as before, into its market and risk-
free components: the market component of risky securities accounts for the 
proportion wm of the investor’s wealth while the remaining proportion wf (= 
1 – wm) of investment is risk-free. Let the expected return and volatility for 

this risky component be E(rm) and σm, and those for the risk-free component 

be E(rf) and σf, respectively. By definition, then, this risk-free component is 

characterized by σf
2 = 0. Where would the investor find such an asset? For 

this we turn to Exhibit 5.17. It summarizes the return and risk statistics for 
selected financial assets for 1926-1999 period from the CRSP database. 
Notice how the risk term effectively disappears from the statistics for 
Treasury bills if inflation is factored in. Here, the standard deviation for 
Treasury bills, which translates into their risk or volatility, is barely two-
thirds of that of inflation for this period whereas the mean return for these 
bills exceeds the inflation rate. An investment in these assets will retain its 
value, therefore, carrying little risk of loss. 

   

Large-Company Stocks

(S&P-500)

Small-Company Stocks

Corporate Bonds

Government Bonds

Treasury-Bills

Nominal Real
Standard
Deviation

Return

13.0%

17.3%

6.0%

5.7%

3.9%

9.7%

13.8%

3.0%

2.7%

0.8%

20.2%

33.4%

8.7%

9.4%

3.2%
 

Exhibit 5.17 

Annualized return and 
risk statistics for selected 
financial assets for the 
1926-2000. Here, return 
is computed as geometric 
monthly mean return 
times 12, the correspond-
ing standard deviation (= 
monthly standard devia-
tion times √12) being the 
measure of risk. 

Source: Ibbotson Associates 2001 Yearbook  
“Stocks, Bonds, Bills, and Inflation” 
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Plugging the above nomenclature in equations (5.3a) and (5.3b), we 
then find26 that, for our portfolio 

 

E(rp) = rf  + 
[E(rm) – rf] 

σm 
σp (5.6a) 

The graph of E(rp) versus σp is called the capital market line whose 

slope, [E(rm) – rf]/σm, is the Sharpe-ratio that we discussed earlier, in section 
4.2 and Exhibit 2.83. It serves as a measure of the market’s risk-adjusted per-
formance. The capital market line defined by equation (5.6a) is shown as line 

AMB in Exhibit 5.18. As point M here, with the coordinates [E(rm), σm], is 
the market portfolio, a risk-averse investor would chose a point between A 
and M on this line, depending on the degree of aversion to risk, whereas a 
risk-taker might even borrow at the risk free rate to invest in M and therefore 
choose to be anywhere between M and B or beyond. 

 
Exhibit 5.18:  

Investing in a portfolio of risky and risk-free assets means being on the capital 
market line AMB. The curve XMY here describes the efficient set of risky assets. 
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This construct has simplified the investor’s choice to one of deciding 

between the weights in M, the market portfolio, and rf, so limiting the 
flexibility allowed by individual preferences. As for the risky assets 
themselves, the curve XMY describes their efficient set, as this curve is the 
Markowitz efficiency frontier described in the preceding section. Notice that 
point M is at the tangency of the efficiency frontier and the capital market 
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line. This is the separation principle in financial economics. Rather than 
having to qualitatively evaluate the levels of utility and risk aversion, it 
decomposes the investment decision into two. The investor first finds the 
efficient set of risky assets (i.e., curve XMY) using the relevant return, 
variance and covariance statistics, and then adds risk-free assets to it 
depending on the desired location on the capital market line.  

Let us now look at two points, P and Q, in Exhibit 5.18 and suppose 
that they represent return and risk on any two portfolios. By construction, 
both have the same variance or standard deviation but different returns, that 
for Q being greater than that for P. As P is located below the capital market 
line here, it has clearly underperformed the market. After all, the market 
portfolio M not only has a return that exceeds the return for P but also has a 
standard deviation that is less than the standard deviation for P. Our portfolio 
Q presents the opposite picture. Notice that it lies above the capital market 
line. Thus, even though its standard deviation exceeds that of the market 
returns, its returns exceed the market returns by a proportionately wider 
margin. 

Equation 5.6(a) and Exhibit 5.18 thus provide us with a direct means 
to evaluate the performance of mutual funds. Exhibit 5.19 illustrates this with 
a practical example. Here we compare the load- adjusted 5-year average 
returns on the top mutual fund performers under different categories, e.g., 
U.S. stock funds (large, mid-cap and small growth, value and blend and the 
specialty funds like those in communications, financials, health, natural 
resources, precious metals, real estate, technology and utilities), international 
stock funds (world stock, diversified emerging markets), bond funds (high-
yield, intermediate-term, international, government, multi-sector, short-term) 
and hybrid funds (domestic and international). Since some mutual funds are 
‘load-funds’ while others are ‘no load’ funds, our use of load-adjusted 
returns creates a level playing field for comparison. Our capital market line 
has been constructed hereby joining plots for market return (annualized total 
return on the S&P-500 index) and 90-day Treasury-bill rates. The funds that 
plot about or above the capital market line here are clearly the market-
performers and over-performers while those that plot below this line are the 
under-performers. The past five years have hardly been the best time for 
precious metals. It is not surprising to find the best-performing specialty fund 
in this sector, Vanguard Gold and Precious Metals (VGPMX), as the worst of 
all funds in our select list of funds in Exhibit 5.19! Notice, also, that the best-
performing real estate fund, Delaware Pooled Real Estate Investor Trust 

(DPRIX), has only performed at or about the market index. 
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Exhibit 5.19: 

A sampling of the top 
mutual fund performers in 
different categories, as of 
August 2, 2001, based on 
the past 5 years’ returns. 
WMICX, the Wasatch 
Micro Cap fund has had 
the highest load-adjusted 
annual return while 
FSELX, the Fidelity Select 
Electronics fund, has had 
the highest volatility. 
DPRIX, Delaware Pooled 
Real Estate Investment 
Trust, topped the real 
estate category. 

 

The universe of mutual funds is huge, of course, and has been the 
subject of innumerable examinations since Jensen’s27 classic study. Jensen 
found it possible to distinguish consistently good managers from the persis-
tently bad ones but, overall, these studies suggest that the gains by 
professional fund managers generally cover the portfolio management 
expenses. A discussion of these and related matters would be tangential here, 
however. Our purpose is to show, with the help of Exhibit 3.19, how easy 
William Sharpe’s seminal work had made it for an individual investor to 
track the performance of mutual fund or portfolio that he or she may have 
invested in.  

We had, in Exhibit 5.18, defined point M as representing the market 
portfolio. But the securities markets price individual securities, not the 
portfolios or indexes comprising them. For instance, the value of the Dow at 
any given point in time depends on what its component stocks are priced at, 
not vice versa. We need, therefore, to be able to find how the return and the 
variance of individual securities in a portfolio are related. 
 

5.2.2 CAPM for Measuring Performance: 
 

To compute the expected return E(ri) on ith security in the market 
portfolio, we note, in Exhibit 5.18, the tangency of capital market line AMB 

to the efficient set XMY at M and, therefore, equate the slope [E(rm) – rf]/σm 
of capital market line with that of the efficient set at this point. This yields28 
the following basic statement of the capital asset pricing model (CAPM): 

E(ri) = rf  + [E(rm) – rf] ×  βi (5.6b) 
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where βi = ρim (σi/σm) is the measure of the extent to which our ith security’s 
rate of return moves with that of the market. It is also the measure of 
systematic or non-diversifiable risk, the component of risk that cannot be 
eliminated through portfolio diversification. The entire second term on the 

right hand side of this equation, [E(rm) – rf] × βi, is the risk premium on our ith 
security with systematic risk equal to βi. 

Equation (5.6a) defines the linear relationship between risk and 
return by stating that the rate of return from a security comprises (a) the risk-
free rate and (b) the adjusted risk premium. The first of these compensates 

for the time value of money while the second is that security’s β (beta) times 

the market risk premium. For the whole market, ρim = 1 and βm = ρim (σi/σm) 

= ρim (σm/σm) = 1. In practice, β is the sensitivity of an equity’s risk premium 
to the changes in market risk premium, or the slope of the security market 
line. This is because equation (5.6b) can be written as 

 

βi = 
E(ri) – rf 

E(rm) – rf 
= 

Risk premium on the security 

Risk premium on the market 
(5.6c) 

 
By way of illustration, Exhibit 5.20 compares the performances of 

four stocks for the April 1986 - March 2001 period. With the highest β of all 
the stocks compared here, Microsoft (MSFT) has also given the best returns. 
The returns on General Motors (GM) and Proctor & Gamble (PG) stocks 

have been poorer in comparison, but their β values are also appreciably 
smaller. 

Exhibit 5.20 is a variant of one of the classic empirical tests 
supporting the CAPM — that study, by Fama and MacBeth29, demonstrated a 
positive relation between average return and beta. It also illustrates a 
common method for estimating beta. If, based on equation (5.6c), we regress 
the observed risk premium [E(ri) – rf] for a security or portfolio against the 

market risk premium [E(rm) – rf], then βi is the slope of the resulting linear 
regression equation. The straight line from such a regression would have an 
intercept as well, say α, at [E(rm) – rf] = 0. We deliberately set it at zero when 
computing the data presented in Exhibit 5.20 in order to conform to equation 
(5.6c). Jensen30 introduced α as a performance measure and showed that 
mutual funds that outperformed the market had statistically significant 
positive α and those with statistically significant negative α consistently 
underperformed the market. It is therefore called Jensen’s α. 

As for the market, the S&P-500 index usually serves as an excellent 
proxy whereas, as for the risk-free rate, the rate on 3-month Treasury bill is 
the most commonly used proxy. The alternative is to find a zero-beta security  
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Exhibit 5.20 

The beta (β) of a stock or a 
portfolio can be seen as its 
sensitivity to the market 
risk premium. Thus, Micro-
soft’s β of 1.46 means that 
a 1% change in the market 
risk premium changes the 
risk premium on Microsoft 
by 1.46%. The relatively 
low β stocks like General 
Motors (GM) and Proctor 
& Gamble (PG) are less 
volatile. But, as the data 
tabulated below show, the 
higher the beta the greater 
will be the returns.  

Annual
Return
50.17%

33.74%

23.25%

20.47%

Annual
Risk

33.27%

25.72%

21.15%

25.82%

MSFT

HD

PG

GM  
Note: Standard deviation is 

the measure of risk. 

 

or portfolio whose expected return, E(rz), bears no correlation with the 

market return (i.e., ρmz = 0). Equation (5.6b) would then modify31 to 

 

E(ri) = E(rz)   + [E(rm) – E(rz)] ×  βi (5.6d) 

 
An updated version of the other classic empirical test32 of CAPM is 

presented in Exhibit 5.21 where we compare average annual returns on the 
five asset classes of Exhibit 5.17, covering the 1926-1999 period, with their 
CAPM-derived values shown as the capital market line. Notice how well the 
theory matches the observed data!  

As security prices fluctuate, so do the corresponding returns and 
betas. Rather than using the CAPM as a deterministic predictor of market 
behavior, therefore, we need to use it as a broad stochastic guide to the 
market. As graphed in Exhibit 5.22, fitting equation (5.6b) to the 1995-2000 
data shows that more of the Dow components performed either better than or 
the same as the broad market, as represented by the S&P-500 index, than 
underperform it. Despite this scatter of data, however, the pattern seen here is 
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what CAPM tells us to expect, i.e., the greater the beta the higher the returns 
and the risk premiums.  
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Exhibit 5.21: 

Average annual 
returns for five 
asset classes of 
Exhibit 3.18 
graphed against 
their β values. 
Also shown is 
the capital mar-
ket line derived 
from equation 
(3.6b). 

 
Exhibit 5.22 

The Jan 1995 – Dec 1999 monthly data show that most of the Dow components 
performed better than or on par with the market (open symbols) than under-
performed (solid symbols). Star denotes the S&P-500 index and the market line is 
based on equation (5.6b). 
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The Dow is an excellent portfolio, of course, and the fact that some 
of the Dow components may plot below the CAPM’s security market line 
during some periods does not necessarily render them rejectable. As for the 
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Dow’s merits as a portfolio, Exhibit 5.23 shows how two of the CAPM-
based measures have varied through the history of this index. One of these, 
the Sharpe ratio, was mentioned earlier in equation (2.13) and graphed for 
the overall U.S. equities market in Exhibit 2.83. It measures the risk premium 
that an investor receives in terms of the portfolio risk borne. Treynor ratio is 
the other measure. Defined as 
 

Treynor ratio  = 
[E(rm) –rf] 

βI 
(5.7) 

 
it measures the risk premium in terms beta, or the portfolio’s systematic risk. 
These two ratios give similar results if the portfolio is well-diversified such 
that only the systematic risk remains. A poorly diversified portfolio, on the 
other hand, would have a smaller Sharpe ratio but a larger Treynor ratio. 
Note how closely together the two ratios for the Dow have moved in Exhibit 
5.23. This justifies our claim that Dow is a well-diversified portfolio. 
 
Exhibit 5.23:  

Dow’s Sharpe and Treynor ratios through the twentieth century have moved in 
tandem, suggesting that it is a well-diversified portfolio. These ratios have been 
computed in annually rolling bands of 30-year segments here, using equations (2.13) 
and (5.7). 

0.0

0.2

0.4

1940 1960 1980

0.00

0.04

0.08

Sharpe Ratio
(left scale)

Treynor Ratio
(right scale)

 

 

5.2.3 CAPM’s Problems and Limitations: 
 

Coming now to the second issue raised above, while it is easy to 
gauge a security’s or portfolio’s performance relative to the CAPM’s market 
line, the question of retaining or ejecting underperformers from the portfolio 
rests on the reliability and consistency of beta as a valid measure of risk. For 
instance, Exhibit 5.23 shows that investors received better equity premium33 
in the 1950s through 1970s than in the 1980s and early 1990s. Indeed, as the 
market’s return and risk statistics have varied over time (e.g., Exhibits 2.33 
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and 2.46), so has the risk premium. But what poses a problem for the CAPM 
is the fact that there have been protracted periods in history when beta has 
been a poor measure of the risk premium. Exhibit 5.24 summarizes the 
results of Fischer Black’s famous study34 that showed, for the 1931-91 data, 
returns below the market line from high beta securities and returns above this 
line for the low beta securities. Indeed, the data for 1966-91 segment of this 
study showed statistically comparable returns, about the same as the whole 
market portfolio, across all beta levels. 
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Exhibit 5.24 

In a study of 1931-91 
NYSE stock returns, 
Fischer Black found a 
general rise in risk 
premium with β, as the 
CAPM predicts. The 
returns across differ-
rent levels of β did not 
lie on the market line, 
however. The numbers 
here denote a β−based 
grouping of the stocks. 
Also, for 1966-91, risk 
premiums were about 
the same across all β 
levels.  

 
 
The results such as those in Exhibit 5.24 are particularly bothersome 

because, as we saw in Exhibit 5.21, small company stocks have historically 
higher betas and returns than the large company stocks. Apparently, and 
contradicting the CAPM premise, beta alone cannot explain why the ex-
pected returns differ. Banz35 was one of the first to show that returns are 
better explained by a firm’s size, measured in terms of the market valuation 
of its equity, than by CAPM’s beta. Fama and French36 have found a firm’s 
price to book ratio to be an even better indicator of the returns on its stock 
than the size. 

The validity of beta as a measure of risk has thus become a conten-
tious issue for the academics as well as the practitioners. The seeds of the 
controversy were planted by Roll who argued that, for a theory that acquired 
its reputation on the claim of easy testability, the CAPM has never been 

correctly and unambiguously tested and “there is practically no possibility 
that such a test can be accomplished in the future”37. 
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That the beta of a security itself changes over time was documented 
by Sharpe himself, one of the principals of what can be now called the SLB 
(Sharpe-Lintner-Black) one-beta CAPM, in a paper coauthored38 with 
Cooper. They estimated betas of securities in the CRSP database for 60-
month rates of return for each year from 1931 to 1967, by first ranking and 
dividing them into ten risk classes and then repeating this procedure for each 
year. In some cases, almost two-thirds of the securities did not remain in the 
same risk class, thus pointing to a significant instability of beta. Beta is now 
known39 to vary over the business cycle and Jagannathan and Wang40 have 
sought to resuscitate the CAPM by advocating that we use more than one 
beta. They incorporate Mayers’41 human capital concept in measuring return 
on aggregate wealth and use time-varying beta and risk premium instead of a 
single beta over the market’s entire history. Pursuing a similar strategy, 
Breeden42 and his associates advocate measuring a security’s risk by its 
sensitivity to changes in investors’ consumption. Exhibit 5.25 schematically 
explains this consumption CAPM and shows how it contrasts with the 
conventional CAPM. 
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Adapted from Richard Brealey and Stewart Myers: Principles of Corporate 
Finance (McGraw-Hill/Irwin, 2003) 

 

5.2.4 The Arbitrage Pricing Theory: 
 

Arbitrage pricing theory (APT)43 offers an alternative to the CAPM. 
Unlike the CAPM’s one factor model, that the tradeoff between risk and 
return is the investors’ only choice, APT envisions a multifactor scenario. An 
arbitrage situation is one that involves no commitment in capital and yields a 
positive rate of return. For it to work effectively, capital markets must be 
perfectly competitive, and the investors must be rational (i.e., prefer more 
wealth to less wealth). 

Exhibit 5.25 

Consumption CAPM defines risk as 
the uncertainty stocks impose on 
investor’s consumption of wealth, 
compared to the standard CAPM in 
which risk is the uncertainty that 
stocks bring to investor’s wealth.   
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To derive the basic expression for the APT, let us start by decom-
posing the expected return on a stock, E(r), into its supposedly known 
macroeconomic sources or “factors” and the ubiquitous “noise”, i.e., 

 
E(r) 

 
= 

 
a  +   

N 

Σ 
i=1 

 

βI × rfactor i 

 
+   noise 

 
(5.8a) 

The factors 1, 2, 3, …, n could be interest rates, energy prices and the 

like, and βi the sensitivity of ith security’s return to the corresponding factor. 
Roll and Ross44 identify five distinct sources of systematic, non-diversifiable 
risk for a well diversified portfolio — investor confidence, interest rates, 
business cycle, long-term inflation and short-term inflation — that together 
explain about 25% of the price fluctuations of an individual company’s 
common stock. At the level of an individual company, most of the price 
volatility comes from such company specific risk factors as production, 
marketing and management risks. A large diversified portfolio of equities, 
with at least 40 individual companies and not heavily concentrated in any 
particular one according to these authors, retains only a very small exposure 
to these company-specific, idiosyncratic, risks but possesses a large amount 
of exposure to the non-diversifiable common factors  (Exhibit 5.26).  Also, as 
the portfolio’s sensitivity to these macroeconomic risk factors is directly 
proportional to the aggregate of the individual companies in the portfolio, 
different weightings of the universe of individual companies produce portfo-
lios with varying risk sensitivities. 

 
Investor confidence
Inflation (long- and short-term)

Business cycle

Company-specific
risks

• Production risks
• Marketing risks
• Management risks

Undiversified
company-

specific risks

Interest
rates

 

Exhibit 5.26 

The sources of 
volatility for in-
dividual compa-
nies (left) and 
large and well-
diversified port-
folios (right). 
 
Source:  
Roll & Ross Asset 
Management 
(www.rollross.com) 

 

Based on equation (5.8a), the expected risk premium can be expressed as: 

 
E(r) – rf 

 
= 

n 

Σ 
i=1 

 

βi × (rfactor i – rf) 

 
 

 
(5.8b) 



 206 

The idea here is that (a) each source of systematic risk has its own 
risk and reward and (b) not all these sources or factors carry the same 

reward/risk ratio at all time. For each βi × (rfactor i – rf) in equation (5.8a), 
therefore, we can construct a suitable portfolio and then monitor, and suitably 
adjust, the each portfolio’s risk exposure. For instance, if the sensitivity to 

each of the factors is zero, then it can be seen by plugging in βi  = 0 in 
equation (5.8b) that we have essentially a risk-free portfolio. Its expected 
return would be E(r) = rf, the risk-free rate. Note that any other situation, with 

E(r) ≠ rf, offers arbitrage profit here. If E(r) > rf, you would buy into the 
portfolio after borrowing at rf whereas, if E(r) < rf, then you would profit by 
selling the portfolio to buy the Treasury bills. As against this, constructing a 
diversified portfolio that is sensitive to the desired factor would give a risk 

premium proportional to the corresponding sensitivity βi. 

The case study of nine New York utilities, reported by Elton et al.45 
and discussed by Brearley and Myers46 is an excellent illustration of the APT 
in practice. Exhibit 5.27 summarizes their basic data and computations.  

 

Exhibit 5.27:  Estimating the Risk Premium by Arbitrage Pricing Theory 
 

Factor Measured by 
Factor  
Risk  

Expected 
Risk 

Premium 

Factor Risk 
× Risk 

Premium 
  (β) (rfactor – rf) β ×(rfactor– rf) 

Yield 
spread 

Return on long-term government 
bonds less that on the Treasury bills 

5.10% 1.04 5.30% 

Interest 
rate 

Change in Treasury bill return – 0.61% – 2.25 1.37% 

Exchange 
rate 

Change in the value of the U.S. 
dollar against a basket of currencies 

– 0.59% 0.70 – 0.41% 

Real GNP Change in the forecast of real GNP 0.49% 0.17 0.08% 

Inflation Change in forecast of inflation – 0.83% – 0.18 0.15% 

Market … 6.36% 0.32 2.04% 

 
The first two columns here show the factors that these authors 

identified as the ones most likely to affect the prices of utility stocks in the 
portfolio and their measures. The sixth factor, called market here, was not a 
direct measure but was included, instead, to account for the portion of the 
return that could not be explained by the other five factors. Estimates of 
factor risk and risk premium were made using the empirical evidence for 
1978-1990 period and are given in the next two columns whereas the 
numbers in the last column are merely the products of the preceding two 
columns. Adding up these numbers in the last column, as suggested by 
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equation (5.8b), the expected risk premium for this portfolio works out to 
8.53%. This means that, with 1-year Treasury bill rate as about 7% in 
December 1990, the last year covered in this study, the expected return on 
the portfolio would be 15.53% (= 7% + 8.53%). 

The APT certainly captures the market’s reality far more effectively 
than CAPM’s one-size-fits-all strategy can. Also, by allowing for multiple 
sources of risk, it enables constructing the portfolios suited for specific 
needs. But identifying the factors and their relative importance is a task 
replete with uncertainties. Generally, for instance, macro-economic factors 
such as surprises in inflation, GNP and investor confidence and shifts in the 
yield curve explain the changes in security returns reasonably well. But if 
they really do as good a job of explaining the market's gyrations as is needed 
for the APT to work, then we must already have the means to predict the 
market! The fact of the matter is that we do not even know if these are indeed 
the “true” factors that we need. Add to this two other problems that we need 
to contend with. One, adding the number of betas only means compounding 
the problems we already have with the one-beta case of CAPM. If time-
varying betas and risk premiums are what we need to make the CAPM work, 
then having to seek a multitude of betas for the same time horizon is hardly 
likely to solve the problem. Two, arbitrage pricing implies the prospects of 
securing profits without having to commit the capital, and this is 
accomplished here by constructing zero-beta portfolios. But then, in the 
stochastic universe of mean-variance optimization that CAPM and APT 
inhabit, where is the guarantee that the arbitrage pricing of a zero-beta 
expected return will indeed end up as the arbitrage price of a zero risk 
premium, once we have introduced such a miscellany of statistical variables? 

 
 

 

 

“Our online investments
are growing too slowly.
We need to
get a faster
computer!”

© 1999 Randy Glasbergen
www.glasbergen.com
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5.3  The Efficient Market Hypothesis and its Implications 
 

5.3.1 The Random Walk of Returns 

The extensive use of statistics in our narrative so far makes it hard to 
imagine that it is only in the past five decades or so that statistical analysis 
has become an indispensable tool in financial economics. Indeed, when 
Maurice Kendall47 claimed in 1953 that stock prices follow a random walk, 
little did he realize that he was pioneering an altogether new era in financial 
economics. It is not that Kendall was the first ever to have recognized this, 
however. That distinction should rightfully go to Louis Bachelier except that, 
despite anticipating by five years Einstein’s seminal work on Brownian 
motion, Bachelier’s study48 had largely remained unkown until Kendall’s 
claim that the daily changes in stock prices are as likely to be positive as 
negative. As a matter of fact, it was Bachelier, and not Kendall, who had first 
conceived the concepts of lognormal distributions49 and geometric mean for 
the stock prices returns that we have discussed in section 3.3. Nor was the 
journal of the Royal Statistical Society, London, the first to let statistics 
muddle its way into economics, by giving Kendall the forum for such 
thoughts and analyses. That distinction goes to the Journal of the American 
Statistical Association, in whose pages Halbrook Working50 had first talked 
of the random behavior of commodity prices almost two decades earlier. 
Kendall’s was a pioneering effort, nonetheless, for the avalanche of studies 
that followed his work eventually led to Eugene Fama’s51 formulation of the 
efficient market hypothesis.  

What does market efficiency mean and why should it arouse any 
investor concern or interest? Fama defined an efficient market as one  

‘where there are large numbers of rational, profit-maximizers actively 
competing, with each trying to predict future market values of 
individual securities, and where important current information is 
almost freely available to all participants’  

so that, on average, ‘competition will cause the full effects of new information 
on intrinsic values to be reflected “instantaneously” in actual prices’. But 
then, if stock prices indeed adjusted to all the available information as rapidly 
as this definition demands, then all stocks should be correctly priced at all 
times. It would then become pointless to seek any overperformers that could 
be added to a portfolio and identify the underperformers that need to be 
dumped from it. As we discussed in the context of Exhibit 5.22, not all stocks 
justify their price all the time.  

The question as to what market efficiency is all about boils down, 
therefore, to what kind of ‘information’ is reflected in stock prices and when. 
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This has produced the following three forms of efficient market hypothesis52 

of which Fama’s above definition is for the strong form: 
 

Weak-

form: 

The market price of a security reflects the information contained in that 
security’s price history. For an investor, seeking superior returns entails 
turning to the fundamental analysis53 (discussed in the next section), 
therefore, in order to retrieve the information that will eventually get 
impounded in the market price. 

Semi-

strong 

form: 

Market prices not only reflect the past prices but also rapidly adjust to 
all publicly available information. Seeking superior returns then neces-
sitates anticipating market’s response to the news or announcements on 
earnings, dividends, stock-splits, mergers, and the like. 

Strong 

form: 

The market price reflects all information that could conceivably be used 
to determine the ‘true’ value of a stock. As a hyper-efficient market such 
as this will always price securities fairly, or at their true worth, the quest 
for superior returns here would rely on the technical analysis54 that we 
discuss in the following chapter of past trends and patterns, if at all. 

 
All these definitions start with the same basic observation, that stock 

prices fluctuate randomly. Even the weak-form denies the presence of any 
patterns in the stock prices. A look at Exhibit 5.28 will explain what this 
really means. Two datasets are compared here for the period of one year, or 
250 trading days: the S&P-500 index and a sequence of random numbers. 
For the S&P-500 Index, this Exhibit shows the daily closing numbers from 
May 3, 2000 to April 30, 2001. The sequence of random numbers has been 
generated here for a normal distribution with annual mean = 0 and annual 
standard deviation = √250 = 15.81%. These numbers correspond to daily 
return = 0% and daily volatility55 = 1%. Notice how hard it would be, with-
out labeling them, to tell one graph from the other.  

 
Exhibit 5.28: 

1000

1200

1400

1600

80

90

100

110

Jul 12, 2000 Nov 13, 2000 Mar 17, 2000

S&P-500 Index
(left scale)

Random Numbers
(right scale)

 

The pattern of daily 
price changes for 
the S&P-500 index 
for one-year period 
(May 3, 2000 – 
April 30, 2001) 
appears closely 
mimicked by the 
random numbers 
generated with 
normal distribution 
(for annual mean = 
0% and annual 
standard deviation 
= 15.81%). 
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5.3.2 From ‘Compass Rose’ to Chaos and Fractals 
 

A random walk implies a lack of memory. Thus, if today’s price 
carries no memory of the past price, then the price tomorrow is unlikely to be 
determined by the price today. This is precisely what an efficient market is. 
Here, a firm’s stock is priced at the level commensurate with that firm’s 
intrinsic worth, in the long run. The challenge is to determine if one can 
benefit from short-term fluctuations in stock prices, by ‘buying low and 
selling high’, say. The problem is that the converse is equally likely. As 
Samuelson argued56, asset prices respond to the unanticipated component of 
news by fluctuating randomly through time. Based on the CAPM, the only 
trend would then be for either the price to adjust to the level of these 
fluctuations or for fluctuations to adjust to the price, or both, so that the 
equity’s risk premium is its beta times the market risk premium. This is an 
empirically testable postulate. All that we need to do is compare a security’s 
price on any given day with the corresponding price on the following day or 
any subsequent day.  

Exhibit 5.29 presents such a scatter diagram for IBM’s daily price 
changes since January 2, 1962, compared to the following day. Had a pattern 
in the price changes existed here, it would have been reflected in the trend 
and correlation. Suppose, for instance, that the change in tomorrow’s price 
followed that of today. We should then find an upward sloping linear trend 
with  
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Exhibit 5.29 

This graph, comparing one 
day’s change in IBM’s stock 
price with that next day from 
Jan 2, 1962, to Dec 29, 1999, 
lacks a distinct pattern, and 
the correlation coefficient of 
0.017 carries no statistical 
significance. The ‘compass 
rose’ pattern is intriguing, 
however, even if it only ref-
lects the fact that stock prices 
change in discrete jumps.  

 
a positive correlation. What if prices fell the next day, to compensate for the 
rise today, or vice versa? That would show up here as a downward sloping 
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linear trend and a negative correlation. What we find here, instead, is the 
total lack of any trend and a correlation coefficient of 0.017 that is not 
significantly non-zero. The only inference that would be consistent with this 
picture would be that the price changes here are completely random. This 
Exhibit shows only the data for IBM. But that is only by way of illustration. 
One can choose any other security, or an index for that matter, and the results 
would be no different. 

A peculiarity is seen in Exhibit 5.29, in the form of evenly spaced 
lines radiating from the origin with the thickest lines pointing in the major 
directions of a compass. The lines at 90º are most readily visible here, 
followed by those at 45º. Crack and Ledoit57, who first detected it, dubbed it 
the ‘compass rose’ pattern and ascribed it to the discrete nature of stock 
prices which restricts the returns to a limited number of values. While they 
found no predictive use of this pattern, it merits our immediate attention 
because of its following implications for estimation and predictability: 

– This pattern is most commonly seen for the ‘high-growth’ or ‘glam-
our’ stocks that investors often prefer. It appears clearly, according 
to Crack and Ledoit, if (a) daily stock price changes are small rela-
tive to the price level, and occur in discrete jumps of a small number 
of ticks, while (b) the stock price itself varies over a rather wide 
range. Subsequent research58 shows that these price changes need not 
really be small.  

– This pattern can be perhaps used for improving stock return fore-
casts, according to Chen59, whereas Kwämer and Runde60 argued that 
it adversely affects the statistical testing of deviations from i.i.d. The 
former result is of interest to most investors, fund managers and an-
nuity providers while the latter should interest option traders and the 
employees in high growth firms who increasingly receive significant 
proportions of their wages in stock options. Recall our discussion 
that normal distribution model is used for analyzing stock returns 
because these returns are independent and identically distributed. 

Contrasted with this caution is the recent argument of Amilon and 
Byström61, that the constraints Chen, Kwämer and Runde have imposed on 
their models are too unrealistic to yield economically meaningful statistical 
inferences. The question whether compass rose pattern can be used to iden-
tify the “glamour stocks” that we all seek must therefore remain open, as yet. 

The question, therefore, is if the empirical data indeed depart 
significantly enough from the random walk pattern to jeopardize our use of 
the normal distribution based statistical measures. This brings us to the world 
of chaos and fractals and their implications to the financial markets62. The 
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problem basically lies in fitting the normal distribution to empirical data on 
stock returns. Recall our finding, in the preceding chapter, that annual returns 
fit the normal distribution model better than the monthly returns. But this 
finding creates a curious problem. Note that the normal or Gaussian model 
describes a continuous distribution, not a discrete one. Therefore, if a normal 
distribution is indeed the correct model, then monthly returns should not 
describe a poorer fit than the annual returns. Instead, the monthly returns are 
found be far too strongly peaked but fat tailed than the normal curve.  

A probability density function that mimics this situation better than 
normal distribution is Cauchy density63. Its characteristic function g(x) is 
 

g(x) = 
1 

π (1+x2) 
for –∞ < x < +∞ (5.9) 

 
Here, x is the variable whose statistical distribution we are trying to examine. 
Obviously, g(x) is symmetric about x = 0 where it has its highest value, and 
tapers off to zero as x → +∞. As can be seen in Exhibit 5.30 where we 
compare the normal and Cauchy curves, a major peculiarity of the latter is 
that it is far more strongly peaked and fat tailed than the normal curve.  

It requires no great imagination, therefore, to see in the Cauchy curve 
the panacea to our problem in seeking to realistically mimic our high peaked 
but fat tailed monthly geometric returns that the normal curve matches 
poorly. Benoit Mandelbrot64, amongst whose disciples was Eugene Fama, 
was perhaps the first to appreciate this reality of the statistical distribution of 
stock price returns. 

 

– 4 – 2 0 2 4

Cauchy
Distribution

Normal
Distribution

 

Exhibit 5.30 

Compared to the Gaussian 
or normal curve, Cauchy 
curve mimics better a high 
peaked but fat tailed distri-
bution like the monthly geo-
metric returns in Exhibit 
2.33. The normal curve here 
has mean = 0 and standard 
deviation = 1. Thus, x here 
corresponds to z in Exhibit 
2.32. Shaded regions show 
where the two curves differ.  

 
Then why not use Cauchy curve, instead of the normal curve, to 

analyze stock returns? The simple answer is convenience. Based purely on 
the statistical structure, it is quite likely that the distribution of stock market 
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returns is non-Gaussian. Note that Fama65 had himself started with the 
exploration of non-Gaussian probabilities for price distributions. Suppose the 
invisible hand that Adam Smith invoked sets the just price for a security and, 
while we all have a fair idea of what it might be, we do not know what it 
actually is. In that case, as the meteorologist Lorenz66 discovered when he 
rounded off the input numbers in his iteration equations, even deterministic 
equations produce chaotic results if the equations are nonlinear. Perhaps this 
is what that great mathematician Henri Poincaré had in mind when he 
concluded, at the dawn of the twentieth century, that “small differences in the 
initial conditions produce very great ones in the final phenomena”. Likewise, 
it is plausible that, in reality, our nonlinear, geometric, price changes keep 
looping about an elusive Lorenz attractor and can be better mapped, there-
fore, by the Cauchy curve. Exhibit 5.31 graphically displays this behavior of 
a single-point Lorentz attractor. 
 

 

Exhibit 5.31 

Notice how, in this picture of 
chaos, a dynamic system like a 
Lorenz system changes over time 
in 3-D space, with the path or 
trajectory looping around and 
around a central attractor, but 
never intersects itself.  

Source:  

Dr. J. Orlin Grabbe’s homepage at 
http://www.aci.net/kalliste/chaos1.htm 
 

 
Clearly, had fitting a curve to the empirical data been our primary 

goal, then we have erred grievously by using the normal curve. But our goal 
is to seek the broad patterns that can guide our investment strategies. Using 
the simple but well-defined lognormal distribution certainly enables this. As 
is readily apparent in Exhibit 3.30, the resulting discrepancy is marginal 
when we limit ourselves to 95% of the probability curve. This is also 
suggested by a recent study67 of the returns on U.S. (S&P-500), U.K. (FTSE-
100), German (DAX) and Japanese (Nikkei-225) stock markets, which 
showed non-linearity in the time of returns but no evidence of chaos. But 
then, there is no reason why an aggregation of chaotic processes may not turn 
out to be non-chaotic68.  

The random walk premise69 of efficient market hypothesis has often 
led to the notion that selecting the stocks is a skill-less task that is best left to 
chance. Nothing could be farther from the truth, however. What the ‘random-
ness’ in statistical distribution70 of price changes, whether normal or 
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lognormal, actually implies here is that the prices randomly drift about an 
overall trend. History amply testifies to the fact that, as for the broad market, 
this overall trend itself is an exponential one. How else would you have an 
inflation-adjusted annual rate of return that has never dipped below 6% over 
any 30-year period through the history of the U.S. stock market?  

The question whether investment professionals can significantly out-
perform the random throw of darts is indeed one that an irreverent and inad-
vertent but nonetheless significant experiment at the Wall Street Journal has 
explored at length. Box 5.2 summarizes its results. Note that the data pre-
sented here do not debunk the dart-throwing strategy altogether. Racking up 
a 4.5% annual rate of return is somewhat superior to the yield on Treasury 
Bills, as a matter of fact. But then, this was a period of substantial market, 
though not exceptional, growth. 

 

Box 5.2 

The Wall Street Journal’s “Dartboard Portfolio” Experiment* 

Experts as
a group

Dow

Dartboard
portfolio

Average investment performance in
100 six-month contests, Jan 1, 1990
to Sept 30, 1998

10.9%

6.8%

4.5%

Investment Dartboard was born at The Wall Street Journal
in 1988, when the Dow stood at just over 2100, mainly
responding to Burton Malkiel’s following explanation**
of efficient market theory.

“Taken to its logical extreme,” the theory suggests “that a
blind-folded monkey throwing darts at a newspaper’s
financial pages could select a portfolio that would do just
as well as one carefully selected by experts.”

To test this idea, the Journal pitted four investment
professionals each month, in a series of one-month
contests that it later extended to six months, against
the forces of chance as exercised  by  four Journal
staffers tossing the darts. The results after 100 six-
month contests strongly favor the pros. What is
particularly reassuring, however, is the fact that the
dart throwers out-performed the Treasury bills but
not the market!

  * Georgette Jasen: “A Brief History of Our Contest”, The Wall Street Journal (Oct 7, 1998)
** Burton Malkiel: “A Random Walk Down Wall Street” (W.W. Norton, June 2000)

 

5.3.3 Some Empirical Tests of Market Efficiency 
 
Overall, the basic premise of the efficient market hypothesis, that 

asset prices fluctuate randomly over time, is a reasonably workable idea. 
True, above-average returns in a given period — a day, a week or a month — 
sometimes follow similar returns in the preceding period71. But then, the 
predictive power of these patterns is rather weak, and stock returns often 
display mean reversion over a 3-5 year horizon72. 
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An early evidence that security prices reflect the market’s immediate 
absorption of relevant news came from the work of Arthur Keown and John 
Pinkerton73. As summarized in Exhibit 5.32, this study found that the stock 
price of the target company jumps up immediately at the announcement that 
it is being taken over or bought out but the subsequent days bring no change 
in this price. There is an upward shift in price in the days immediately 
preceding the announcement, however, pointing to a gradual leakage of 
information to the insiders. This is consistent with the efficient market 
hypothesis because most of the jump in price occurs on the day of the 
announcement, and no significant change occurs later, i.e., once made public, 
the information is absorbed fully and immediately. What about the acquiring 
firms? Their stocks generally fall74, by about 10% on average, over a 5-year 
post-merger period. 
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Exhibit 5.32 

While impending mergers 
and acquisitions are poorly 
held secrets, and may give 
the insiders some excess 
returns, most of the jump in 
price occurs on the day of 
announcement. 

Source:  
Arthur Keown and John 
Pinkerton. 

 
The merger of America Online and Time Warner is a case in point. 

At the time the merger was announced (Jan 10, 2000), America Online was 
the nation’s largest Internet service provider, with over 20 million 
subscribers and about $163 billion in market capitalization. Time Warner 
was then the biggest name in the world of traditional media and was valued 
at about $100 billion. The effect of this announcement on their share prices 
was marginal, if at all.  Exhibit 5.33 graphs these price-paths from Dec 1, 
1999 to Jan 31, 2001, a period that covers the initial announcement as well as 
the FTC (Federal Trade Commission) and FCC (Federal Communications 
Commission) approvals about a year later. These data show no conspicuous 
effect of the merger on prices of Time Warner shares, which have fluctuated 
between $42.5 and $76.05 in this period [we have used the Time Warner 
Trading Company (TWTC) shares as the proxy for Time Warner shares]. As 
for America Online, the trend throughout has been one of a continuous 
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decline in share prices. The broad market itself has been rather flat, or in the 
trading range, in this period and the S&P-500 index has fluctuated between 
1265 and 1527. 

Exhibit 5.33: The merger announcement of America Online and Time-Warner did 
little to arrest the falling trend in America Online’s price and may 
have only given a temporary boost to Time Warner’s price, if at all. 
The top panel here shows the prices and the bottom panel their daily 
changes. 
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Now, the fact that the markets are efficient does not really make it 

impossible, over time, to log a better performance than the market. Take the 
example of Warren Buffet, for instance. As shown in Exhibit 5.34, his 
Berkshire Hathaway fund has consistently beaten the S&P-500 index. Of the 
three investments compared here, a $7,455 investment on January 1, 1990, 
would have grown to $28,305 in the S&P-500 index, $37,653 in Fidelity’s 
Magellan fund, and $68,000 in Buffet’s Berkshire Hathaway fund75. Why 
this odd investment amount of $7,455? This is what the shares of Berkshire 
Hathaway were priced at on January 1, 1990.  

Though not uncommon altogether, cases such as these are rather 
rare. But, even here, the record is not altogether unchequered. For instance, if 
you had bought a Berkshire Hathaway share (BRK.a) at its all time high of 
$83,330 a certificate in June 1998 then, not counting the appreciation in book 
value, you would have lost 18% on it by April 2001. Comparable invest-
ments would have had you up by 13% in the S&P-500 index and 17.4% in 
Fidelity Magellan. 
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Exhibit 5.34:  

The managers and funds 
that have beaten the market 
consistently for 10 years or 
longer are hard to find. 
Here are two of the notable 
exceptions: Warren Buf-
fet’s Berkshire Hathaway 
fund and Fidelity’s Mage-
llan fund. 
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Overall, though, if you expect that professional fund managers with 
active hands-on management of their funds would get you better returns than 
what you would receive by passively investing in an index, think again. 
Mutual funds are often the best examples of active portfolio management. 
Thus, if active management indeed works, then their average performance 
should be superior to that of the market index. But innumerable studies of the 
vast U.S. mutual fund industry have consistently demonstrated76 their chronic 
underperformance. Even when performance has been better, and a fund has 
‘beaten the market’ so to speak, the excess return over the market has mostly 
gone into the fund’s management expenses, and seldom into the investor’s 
pockets. 

Strategies (e.g., Dogs of Dow, Fabulous Five) and effects (e.g., the 
January effect) that often help beat the market too exist, and are discussed in 
Chapter 4. To the supporters of the efficient market hypothesis, such market 
“anomalies”77 only cause satisfaction, not disappointment, however. The fact 
that they are anomalies reaffirms the notion that, despite periodic excursions, 
the market always returns to the fundamentals of fairly pricing the equities 
based on what they are truly worth.  
 

5.3.4 The Efficient Market’s Irrational Exuberance 

A problematic issue for the efficient market hypothesis is that of the 
market bubbles and crashes. Indeed, it is hard to imagine how they could 
recur if the markets indeed absorbed information efficiently over time so that 
equities were priced at the levels commensurate with their economic 
fundamentals. No price-misalignments would then occur, producing the 
speculative bubble that a subsequent market crash would seek to correct. 
Bubbles (e.g., Holland’s Tulipmania or Great Britain’s South Sea bubble) 
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and crashes (e.g., the end of these bubbles, the crashes of 1792, 1929 and 
1987 in the U.S.) do occur, however. Take the October 1987 crash, for 
instance. The first nine months of that year saw a bubble, with 33% 
appreciation of the S&P-500 index, and this trend got dramatically reversed 
by the middle of October. Most of the fall occurred in one day, on October 
19, when the index fell by 22%, but this was after a 9% decline in the 
preceding week. The Dow lost 508 points that day, and the overall U.S. stock  

 
Exhibit 5.35 

The crash of October 1987 was not 
limited to the Wall Street, as can be 
seen from the drops suffered by the 
stock market indexes world-wide78. 
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market lost about $500 billion. 
There were signs that could, in 
retrospect, have forewarned of the 
disaster almost a week in advance. 
Three of them79 particularly stand 
out — the announcement of one of 
the largest merchandise trade defi-
cits in the history of the U.S., the 
possible elimination by the U.S. 
Congress of the tax benefits of 
leveraged buyouts, and the likely-
hood of Fed raising the discount 
rate.  

These problems could not 
have directly affected markets out-
side the U.S., however. But, as can 
be seen in Exhibit 5.35, the stock 
markets crashed worldwide. The 
U.S. stock market has the most 
capitalization of all equity markets 
worldwide, and accounted for a 
larger share of the global markets 
then. Its turmoil is unlikely to have 
left the other markets unaffected. 
This global crash was perhaps the 
domino effect, therefore. But that 
still begs the question as to why the 

market, if it is indeed so efficient that equities stay priced about their funda-
mental worth over time, allowed the prices to rise so high, speculatively, that 
they would have to come crashing down when the bubble burst. And, if the 
crash did not drag stock prices down to the levels well below their intrinsic 
value then we also need to explain how the market recovered so rapidly. Had 
you invested $10,000 in the S&P-500 index at the market’s pre-crash peak in 
August 1987, then the crash would have left you almost $3,000 poorer in 
November 1987 but, exactly two years later, in July 1989, your investment 
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would have grown to $11,240, in nominal dollars! Chances are that you 
would have blissfully slept through what Wall Street calls the ‘Black 
Monday’ of October 19, 1987, without ever noticing that the market had ex-
perienced a severe crash. Patience does pay, indeed! 

Stock prices often stray from their intrinsic worth or the fundamental 
value for extended periods of time. As we clearly saw from our examination 
of the market’s history, the trend for most of the time has been one of 
appreciation. This translates into increasing returns, and makes the stocks 
pricier, so that the returns must eventually drop and trigger a concomitant fall 
or “correction” in the price. The pricier a stock gets the greater will be its 
price-earnings (P/E) ratio, which would drop when the price gets corrected. 
This, as can be seen in Exhibit 5.36 where we compare the 10-year averages 
of annualized returns and P/E ratios for the S&P-500 index, gives the market 
the kind of cyclicity that we first saw in Chapter 3. 
 

Exhibit 5.36: The presence of similar but lagged cyclicities in the graphs of real 
returns on the S&P-500 index and the corresponding P/E ratios 
suggests that a self-correcting mechanism is built into the market. 
Monthly data for the S&P-500 index have been used here. The 
returns here are annualized total returns (real) for 10-year holdings 
and are shown here in monthly rolling bands 
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Note the lagged, not coincident, cyclicities in market returns and P/E 

ratios in Exhibit 5.36. Overall, high P/E ratios here coincide with the onset of 
declining returns and low P/E ratios portend rising returns, as Campbell and 
Shiller80 have reported. This is also reminiscent of the negative correlation of 
annualized returns for trailing and forward 20-year holdings that we saw in 
Chapter 3. The problem is that the cyclicities so pronounced in the two time 
series in Exhibit 5.36 match approximately at best. As Exhibit 5.37 shows, 
their correlation improves when, rather than the P/E ratio, we use deviations 
from the long-term trend in P/E ratios that we discussed earlier. But even this 
improvement (coefficient of correlation = 0.58) is not strong enough to make 
the P/E a reliable gauge for the likely market returns. 
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Exhibit 5.37:  P/E ratios correlate well with annualized returns (left panel), and 
this correlation improves when we use the deviations of monthly P/E 
ratios from the long-term trend (right panel). 
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It is hard, nonetheless, to label as random fluctuations the cyclicities 

in the P/E ratio and annualized returns data seen in Exhibit 5.36. In terms of 
real prices, for instance, the January 1960 – December 1979 period averaged 
a 1.63% annual drop (standard deviation = 15.39%), compared to an average 
annual rise of 8.62% (standard deviation = 13.76%) during January 1980 – 
December 1999.  

Is there a fundamental explanation for such rabid changes in prices 
over protracted periods. We revisit the Gordon growth model, in Box 5.3, to 
seek an answer. Note that, compared to the steady growth (g) and discount 
rate (r) model in Exhibit 2.1, where (r – g) is constant, a rising (r – g) 
scenario translates into a steep drop in the price (P). By the same token, a 
falling (r – g) environment has the opposite effect of a runaway price spiral. 
To find what could have produced such swings in (r – g), we only need to 
look at Exhibit 2.51. Notice how steeply the interest rates generally rose in 
the 1960s and 1970s, and how they have been falling since the early 1980s. 
Thus, as Exhibit 5.36 shows, 1960-79 was a period of declining P/E ratios 
and returns, whereas 1980-99 witnessed rising P/E ratios and returns. 

Misalignments such as these between the asset-fundamentals and 
their market values are hardly limited to the stock markets, however. They 
particularly afflict the foreign exchange market. In the case of the stock 
markets, Summers has argued81 that, for most of the times, the market’s mis-
alignments either gradually build up or unwind. The asset prices deviate 
appreciably from the fundamentals during these times, therefore, even if the 
daily price fluctuations reflect market’s immediate response to the relevant 
new information and mimic the random walk. The reversion to the mean, on 
this picture, takes 3-5 years, as mentioned before.  
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Box 5.3

Gordon Growth Model and the Logic of Irrational Exuberance

Real prices rose barely (= 0.36% per year) during 1970-79 but rose 8.13% annually during
1980-99. Let us examine if the Gordon growth model can explain why. The analytical
expression derived in Box 2.1 for price (P) as the present value of future cash stream, i.e.,
P = D/(r – g), where D denotes dividends, r the discount rate and g the dividend growth
rate, can be rewritten as

r = (D/P) + g Eq. (i)

If we treat g as the growth in price GP

(= ∆P/P, say) then r is the total return.

Also, as was seen in Box 2.1, if book

value = market value then r becomes

the return on equity (ROE), so that, if

g is the sustainable growth rate, i.e.,

g = ROE × (1 – D/E), then Eq. (i) can

be written as

r = ROE = E/P Eq. (ii)

The Exhibit above compares these two rates — total returns from Eq. (i) and ROE from
Eq. (ii) — with the 10-year Treasury yields, for the January 1970 – December 2001 period,
and also shows the spread (= Total Return – ROE) of these returns. We have computed g =
GP for Eq. (i) as annualized price changes for 10-year holdings, in order to reduce the fluc-
tuations that make visualization difficult without adding much more to information. The
1970-2000 interest rate cycle clearly affected stock prices dramatically. Note that,

� the spread has been positive since the mid-1980s, with the 10-year Treasury yields marking the
mean of the two rates, perhaps as the decline in interest rates started taking effect, and

� total returns were greatly subdued in the preceding period of rising interest rates, and the ROE
remained appreciably higher and generally exceeded the 10- year Treasury yields, so producing
a negative spread of returns.

As high prices should lower both the estimates of r, this difference can be ascribed directly
to the term g in Eq. (i) which we have computed here as GP (= ∆P/P). This reflects the fact
that future cash streams acquire greater weight in a falling interest rate environment (e.g.,
during 1982-99), as can be gauged from the Gordon growth equation itself, and from Eq.
(2.3) in the text, whereas the cash receipts that are to come farther into the future count for
increasingly less in present values when interest rates are rising (e.g., during 1970-82). It
can be argued, therefore, that price changes can be explained by changes in interest rates
and by changing expectations of future growth. Obviously, exuberance is not necessarily 
irrational. This also shows how efficient the market is in incorporating the secular changes 
in interest rate regime.
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g is the sustainable growth rate, i.e.,

g = ROE × (1 – D/E), then Eq. (i) can
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As high prices should lower both the estimates of r, this difference can be ascribed directly
to the term g in Eq. (i) which we have computed here as GP (= ∆P/P). This reflects the fact
that future cash streams acquire greater weight in a falling interest rate environment (e.g.,
during 1982-99), as can be gauged from the Gordon growth equation itself, and from Eq.
(2.3) in the text, whereas the cash receipts that are to come farther into the future count for
increasingly less in present values when interest rates are rising (e.g., during 1970-82). It
can be argued, therefore, that price changes can be explained by changes in interest rates
and by changing expectations of future growth. Obviously, exuberance is not necessarily 
irrational. This also shows how efficient the market is in incorporating the secular changes 
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Likewise, as for the foreign exchange rates, we would ordinarily 

expect that future spot rates in an efficient, risk-neutral, market would con-
verge towards the present forward rates. Suppose the euro, the common 
currency of 11 of the European Union members, has a spot (seuro/$) rate of 
1.18 euro/$ and 1-year forward rate (feuro/$) of 1.191 euro/$, suggesting euro’s 
likely fall against the U.S. dollar. It will therefore attract those buyers and 
traders who agree with the implicit rate of the euro’s fall, or expect that the 
euro may fall farther. But those traders who expect the euro to rise would 
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prefer to wait for a better rate in the spot market, so drying the supply of the 
currencies. The resulting supply-demand equilibrium for the two currencies 
for forward trading would justify formulating the rule 

feuro/$/seuro/$ = E(seuro/$)/seuro/$ (5.10) 

where E(seuro/$) denotes spot exchange rate expected at the time correspond-
ing to the forward rate feuro/$. This states the expectations theory of exchange 
rates82, that forward rate equals expected future spot exchange rates, and en-
sures that returns expected on interest-bearing assets in the two currencies are 
equal. Empirical data paint the opposite picture83, however, because spot ex-
change rates tend to diverge from, not converge to, the initial value of the 
forward rate.  

Overall, the foreign exchange market too shows the fluctuations that 
broadly mimic a normal distribution. This is clearly brought out in Exhibit 
5.38. The distribution of daily changes in U.S. dollar price of ECU, precursor 
currency to the euro, for Jan 1, 1997 – Dec 31, 1998 period is shown in the 
top panel here. The bottom panel shows the corresponding distribution of 
daily changes in U.S. dollar price of euro for the Jan 1, 1999 – March 20, 
2001 period. 
 

 

Exhibit 5.38 

Price changes in the foreign ex-
change market too show random 
fluctuations that, much like the 
stock returns, reasonably mimic 
the normal distribution model. 
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Much like those in the equities markets, misalignments in the foreign 
exchange markets too must eventually disappear, as they do, after persisting 
for protracted periods comparable to the equities markets84 though. This is 
not to claim, of course, that we know the economic fundamentals85 that 
presumably govern the equilibrium levels that the rates in the foreign ex-
change market would eventually settle to. 

 

5.3.5 Market Efficiency and the Investor’s Choices 
 
Some scholars therefore advocate either discarding the efficient 

market hypothesis altogether, whether for the equities market or for the 
foreign exchange market, or modify it so drastically that it can no longer help 
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understand the market behavior. De Jong et al86 trace this problem to the fact 
that the agents who trade in the asset markets are of two types: the “noise 
traders” who operate by reacting to the market hype or noise87, while the 
“rational traders” operate based on careful analysis of the market funda-
mentals, price patterns or charts, and the statistical structure. Whether it is 
due to this noise, or due to inherent limitations of the efficient market 
hypothesis, there is a rising clamor for behavioral finance88 and against the 
random walk model, the bedrock of efficient market hypothesis. Two 
questions therefore arise: (a) does it really matter whether the market is 
efficient or not? and (b) what is an investor to make of these academic 
debates about market efficiency? 

The best answer to the first question comes from Goetzmann89, who 
identifies the following benefits of an efficient market: 

– Price in an efficient market will not stray too far from the true economic 
price if you allow arbitrageurs to exploit deviations. This will avoid sudden, 
nasty crashes in the future.  

– An efficient market increases liquidity, because people believe that the price 
incorporates all public information, and are therefore less concerned about 
paying too high a price.  

– Arbitrageurs provide liquidity to investors who need to sell or buy securities 
for reasons other than betting on changes in expected returns. 

The answer to the second question is given in Box 5.4.  It reproduces  

the six lessons of efficient mar- 
ket hypothesis that Brearly and 
Myers90 consider crucial for cor-
porate financial management but 
are equally valid for individual 
investors and investment mana-
gers. 

What if the market is in-
formationally inefficient91? That 
poses a paradox, as Grossman92 
has argued. If stock prices reflect 
all the necessary information 
then there is no incentive to ac-
quire information. Why would 
any one either seek or process 
the information that the market 
could share, then, and if no one 
has sought to gather information 
then how can prices reflect that 
nonexistent information? 
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Obviously, there are two dimensions to the informational efficiency 
that need to be considered in formulating a suitable investment strategy, or 
sets of them. One is the market’s informational efficiency; and the other is 
the informational efficiency of investors who may be either well informed, or 
moderately informed, or poorly informed. A good case can be then made for 
investment by indexing if the market is efficient. Since prices in such a mar-
ket reflect all available information, their changes will occur randomly. 
Passively investing in an index or a mutual fund, such as Vanguard 500 Port-
folio that tracks the performance of the S&P-500 index or a fund indexed to 
the total market, would then make eminent sense. One could have ridden 
with the NASDAQ-100, for instance, by buying into the ‘cube’ (QQQ) as 
was mentioned in the previous chapter. 

The virtues of passive investing do not stop at the threshold of an 
efficient market, however. Every year, no more than about one-third of active 
investors perform either at or above the market’s level, and two-thirds under-
perform. Therefore, as Steven Thorley93 has argued, “if market prices are not 
efficient and investing is a matter of talent, then the investors in the under-
performing majority will tend to be the same from year to year”. If all the 
investors started indexing as a matter of routine, on the other hand, then a 
proportionately larger number of them will obviously start performing at the 
level of the market, so doubling the proportion of market-performers and 
overperformers. This would certainly be an improvement, overall. As passive 
investing involves no information-costs, gross and net returns are the same as 
the market’s, no matter whether the market is informationally efficient or not.  

This is shown in Exhibit 5.39 where we conceptually examine the 
investor’s returns using two variables: market’s informational efficiency and 
the investor’s use of that information. By using cost of information as zero, 
we have integrated our information quotient dimension, i.e., whether or not 
the investor uses the information, with the active versus passive style of in-
vesting. Here, a ‘poorly-informed’ investor is merely one who is not 
extracting and incorporating information into decision-making.  

How does active investing fare in this picture? The acquisition and 
use of information is not a cost-less exercise but the information above and 
beyond what is already impounded in the price is hard to find if the market is 
efficient. By definition, such a market also precludes the possibility of above-
market returns. This leaves us with gross returns at the market rate or, taking 
the cost of information out, a sub-market rate for net returns. As Sharpe94 has 
argued, in an efficient market “before costs, the return on the average 
actively managed dollar will equal the return on the average passively man-
aged dollar” so that “after costs, the return on the average actively managed 
dollar will be less than the return on the average passively managed dollar”. 
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Exhibit 5.39 

Net returns on investment are defined by the market’s informational efficiency and 
the investor’s information quotient95. 
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On the other hand, if the market is inefficient, or weakly efficient at 

best, then looking at the prices and their history alone will do little good. 
Now there is a real possibility of identifying a Microsoft or AOL in the off-
ing. But this also means saying good buy to no-load mutual funds, selecting 
stocks from the universe of 7,000 and odd offerings, and timing when to buy 
and when to sell. There is also room now for designing and using suitable 
hedging strategies. The potential for rich rewards is tremendous, therefore, 
but so is the risk of total loss. The gross returns are as likely to exceed the 
cost of information in the process, as to be dwarfed by it, leaving the net re-
turns open to question.  

Recent research96, as also the examples presented above, do point to 
significant gains from active investing, however. Indeed, there is no reason 
why an informationally efficient market should preclude the success of 
simplified strategies that can beat the market. Take the example of the ‘Dogs 
of Dow’ strategy, or its cousin the ‘Fabulous Five’, for instance. As shown in 
Box 5.5, their 1971-2000 performances have certainly surpassed that of the 
market by a significant margin. A normal distribution of returns provides 
room for above average as also sub-average performances, after all. It is not 
as if we are looking at a statistical distribution with a finite mean but no 
variance although such a distribution does exist, as an extreme of the Pareto-
Levy family of distributions97 to which a normal distribution model belongs. 
But we would then have to also contend with the other, scary, extreme with 
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no mean and an infinite variance. Mercifully, though, such a situation does 
not really arise here, particularly as the market beating strategies like ‘Dogs 
of Dow’ do not call for staying with the same stock year after year. Besides, 
these strategies may not have above market returns if we consider their risk-
adjusted returns, transaction costs and tax implications98 and also note that a 
company like Microsoft that paid no dividend until recently would have been 
an outcast from such lists during the period of its most spectacular growth!  

 

Fabulous 

Five

Dogs of 

Dow
Dow

S&P-

500

Return 20.70% 17.87% 14.29% 14.32%

Volatility 18.69% 15.45% 16.23% 16.32%

Correlation* 0.62 0.77 0.95 1

Beta* 0.71 0.72 0.94 1

Sharpe-Ratio 0.75 0.73 0.47 0.47

Treynor-Ratio 0.20 0.16 0.08 0.08

*Measured against S&P-500

Return statistics 

for 1971-2000

Looking for ways to beat the market? Try the “Dogs of Dow”§, 
or “Fabulous Five”, its junior variant. These strategies combine
the growth potential of undervalued stocks with the strength of 
the 30 of the best known and most successful companies in the
world,  the  components  of 
the  Dow   Jones  Industrial 
Index.  The chart alongside 
and  the graph below show 
their impressive 1971-2000 
performance statistics.
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Based on these 1896-2001 averaged data, you could certainly improve your yield by 
selling Dow at the peak of the summer rally in late August-early September and buying 
back at the fall bottom in late October-early November. The cycle seems to have shifted 
about a month back in the 1990s, however.
____________________________________

Box 5.5: Beating the Market with the Dogs of Dow

How to play these strategies? For the “Dogs of Dow”, select 2nd through 11th of the least 
priced Dow stocks with the highest yields (2nd to 6th for the “Fabulous Five”), preferably 
at the bottom of the fall decline, and sell towards the top of the summer rally. For better 
results, we could try the latter 2-2½ years of the Presidential Term, although the question 
whether it would work in this new millennium remains to be answered! 

§ Michael O’Higgins & John Downes: Beating the Dow (Harper-Collins, 1991)
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Looking for ways to beat the market? Try the “Dogs of Dow”§, 
or “Fabulous Five”, its junior variant. These strategies combine
the growth potential of undervalued stocks with the strength of 
the 30 of the best known and most successful companies in the
world,  the  components  of 
the  Dow   Jones  Industrial 
Index.  The chart alongside 
and  the graph below show 
their impressive 1971-2000 
performance statistics.
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selling Dow at the peak of the summer rally in late August-early September and buying 
back at the fall bottom in late October-early November. The cycle seems to have shifted 
about a month back in the 1990s, however.
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How to play these strategies? For the “Dogs of Dow”, select 2nd through 11th of the least 
priced Dow stocks with the highest yields (2nd to 6th for the “Fabulous Five”), preferably 
at the bottom of the fall decline, and sell towards the top of the summer rally. For better 
results, we could try the latter 2-2½ years of the Presidential Term, although the question 
whether it would work in this new millennium remains to be answered! 
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5.4 The Insights from Insights – Concluding Remarks 
 

This chapter has examined diversification across stocks, investment 
vehicles, sectors of the economy and the national markets. It reaffirmed the 
indispensability of diversification as a stabilization tool and a mechanism for 
dealing with the cyclicity and unpredictability of the market. 

Basic to the three insights discussed here — portfolio diversification 
or the Markowitz model, the risk-return correlation models of asset prices, 
CAPM and APT, and the efficient market hypothesis based on Gaussian 
distribution of returns — is the assumption that returns are symmetrically 
distributed. The simplicity and elegance of this assumption certainly makes 
generalizations possible, but extracts a major cost in that it ignores skewness 
and kurtosis in the data. While the latter is actually a desired property of the 
returns, as we have discussed in Chapter 3, the former is not. What would be 
the point in investing, for instance, if the returns were not biased towards the 
positive, or displayed skewness? But, if the returns were indeed skewed, then 
what accuracy can be placed on the assumption of a symmetric distribution 
of returns?  

Since returns show lognormal distribution, Leland’s99 suggestion that 
we replace CAPM’s portfolio beta (βp = σpm/σ2

m) by a modified risk measure 
Bp, offers an interesting solution to this problem. This risk measure Bp can be 
written as 

 

Bp = [covariance{µp – (1+µm)-b}]/[variance{µm – (1+µm)-b}] (5.11a) 

 
compared to the CAPM portfolio beta 
 

βp = [covariance{µp – (1+µm)}]/[variance{µm – (1+µm)}] (5.11b) 

 
Here, µp and µm denote the mean returns on the portfolio and the market, res-
pectively, coefficient b = (µm – rf)/σm

2 is the market price of risk, and σm
2 is 

the variance of market returns. As Bp → βp to a first order approximation, 
when volatilities are small, neglecting the deviations from symmetric model 
affects long time-horizon more adversely than short time-horizons. The irony 
is that active management is better equipped to deal with such problems than 
passive management, although the latter may need it more than the former! 

Clearly, this chapter’s detailed look at the market efficiency debate, 
and the implications that it has on investors’ choices and strategies, affirms 
that investment in research intended to beat the market has dubious results, 
but could not conclude that ignorance may prove to be a bliss. 
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Leland shows that this risk measure Bp is given by 

Bp = 
covariance[µp – (1+µm)-b] 

variance[µm – (1+µm)-b] 
= [exp (µp–µm+ 0.5σp

2 – 0.5σm
2)] 

exp(-bσpm) – 1 

exp(-bσ2
m) – 1 

Here, µp and µm denote the mean returns on the portfolio and the market, respectively, while 
σp and σm denote the corresponding variances and σpm the covariance of portfolio and 
market index returns, and the coefficient b is the market price of risk that amounts, in 
continuous time, to b = (µm – rf)/σm

2. As the CAPM beta, βp, is given by 

βp = [exp (µp – µm + 0.5σp
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the first-order Taylor series expansion [exp(x) = 1+x] yields 
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Thus, for small volatilities or short time-horizons, Bp → βp, so that CAPM’s mismatches 
have no adverse effects on the portfolio, as in the case of portfolio managers, but the 
differences between theory and reality can be substantial when the time-horizon is long, as 
in the case of the long-term investors! 


